Skip to main content Accessibility help
×
Home

Progressive flexural–gravity waves with constant vorticity

  • Z. Wang (a1) (a2) (a3), X. Guan (a1) (a3) and J.-M. Vanden-Broeck (a4)

Abstract

This paper is concerned with the interaction of vertically sheared currents with two-dimensional flexural–gravity waves in finite depth. A third-order Stokes expansion is carried out and fully nonlinear computations are performed for symmetric, steadily travelling waves on a linear shear current. For upstream periodic waves, two global bifurcation mechanisms are discovered. Both branches bifurcate from infinitesimal periodic waves, with one stopping at another infinitesimal wave of different phase speed, and the other terminating at a stationary configuration. Generalised solitary waves are found for downstream waves. More surprisingly, the central pulse of the generalised solitary wave can become wide and flat as the computational domain is enlarged. This provides strong evidence for the existence of wave fronts in single-layer free-surface waves. Particle trajectories and streamline structures are studied numerically for the fully nonlinear equations. Two patterns, closed orbits and pure horizontal transport, are observed for both periodic and solitary waves in moving frames. The most striking phenomenon is the existence of net vertical transport of particles beneath some solitary waves due to wave–current interactions. The streamline patterns alternate between net vertical transport and a closed orbit, resulting in the formation of a series of nested cat's-eye structures.

Copyright

Corresponding author

Email address for correspondence: zwang@imech.ac.cn

References

Hide All
Akers, B. F., Ambrose, D. M., Pond, K. & Wright, J. D. 2016 Overturned internal capillary–gravity waves. Eur. J. Mech.-B/Fluids 57, 143151.
Akers, B. F., Ambrose, D. M. & Sulon, D. W. 2017 Periodic traveling interfacial hydroelastic waves with or without mass. Z. Angew. Math. Phys. 68, 141.
Beale, T. J. 1991 Exact solitary water waves with capillary ripples at infinity. Commun. Pure Appl. Maths 44 (2), 211257.
Bhattacharjee, J. & Sahoo, T. 2009 Interaction of flexural gravity waves with shear current in shallow water. Ocean Engng 36, 831841.
Borluk, H. & Kalisch, H. 2012 Particle dynamics in the KdV approximation. Wave Motion 49, 691709.
Champneys, A. R., Vanden-Broeck, J.-M. & Lord, G. J. 2002 Do true elevation gravity-capillary solitary waves exist? A numerical investigation. J. Fluid Mech. 454, 403417.
Choi, W. 2009 Nonlinear surface waves interacting with a linear shear current. Maths Comput. Simul. 80 (1), 2936.
Constantin, A. 2006 The trajectories of particles in Stokes waves. Invent. Math. 166, 523–35.
Constantin, A. & Strauss, W. 2004 Exact steady periodic water waves with vorticity. Commun. Pure Appl. Maths 57 (4), 481527.
Constantin, A. & Strauss, W. 2010 Pressure beneath a Stokes wave. Commun. Pure Appl. Maths 63, 533557.
Curtis, C. W., Carter, J. D. & Kalisch, H. 2018 Particle paths in nonlinear Schrödinger models in the presence of linear shear currents. J. Fluid Mech. 855, 322350.
Dias, F. & Vanden-Broeck, J.-M. 2003 On internal fronts. J. Fluid Mech. 479, 145154.
Ehrnström, M. & Villari, G. 2008 Linear water waves with vorticity: rotational features and particle paths. J. Differ. Equ. 244, 18881909.
Fochesato, C., Dias, F. & Grimshaw, R. 2005 Generalized solitary waves and fronts in coupled Korteweg-de Vries systems. Physica D 210, 96117.
Forbes, L. K. 1986 Surface waves of large amplitude beneath an elastic sheet. Part 1. High-order series solution. J. Fluid Mech. 169, 409428.
Gao, T. & Vanden-Broeck, J.-M. 2014 Numerical studies of two-dimensional hydroelastic periodic and generalised solitary waves. Phys. Fluids 26 (8), 087101.
Gao, T., Wang, Z. & Milewski, P. A. 2019 Nonlinear hydroelastic waves on a linear shear current at finite depth. J. Fluid Mech. 876, 5586.
Gao, T., Wang, Z. & Vanden-Broeck, J.-M. 2016 New hydroelastic solitary waves in deep water and their dynamics. J. Fluid Mech. 788, 469491.
Greenhill, A. G. 1886 Wave motion in hydrodynamics. Am. J. Maths 9 (1), 6296.
Greenhill, A. G. 1916 Skating on thin ice. Phil. Mag. 31, 122.
Grue, J. & Kolaas, J. 2017 Experimental particle paths and drift velocity in steep waves at finite water depth. J. Fluid Mech. 810, R1.
Guyenne, P. & Părău, E. I. 2012 Computations of fully nonlinear hydroelastic solitary waves on deep water. J. Fluid Mech. 713, 307329.
Guyenne, P. & Părău, E. I. 2014 Finite-depth effects on solitary waves in a floating ice sheet. J. Fluid Struct. 49, 242262.
Hoefer, M. A., Smyth, N. F. & Sprenger, P. 2019 Modulation theory solution for nonlinearly resonant, fifth-order Korteweg-de Vries, nonclassical, traveling dispersive shock waves. Stud. Appl. Maths 142, 219240.
Hsu, H., Francius, M., Montalvo, P. & Kharif, C. 2016 Gravity-capillary waves in finite depth on flows of constant vorticity. Proc. R. Soc. A 472, 20160363.
Hsu, H., Kharif, C., Abid, M. & Chen, Y. 2018 A nonlinear Schrödinger equation for gravity-capillary water waves on arbitrary depth with constant vorticity. Part 1. J. Fluid Mech. 854, 146163.
Hunter, J. K. & Vanden-Broeck, J.-M. 1983 Solitary and periodic gravity-capillary waves of finite amplitude. J. Fluid Mech. 134, 205219.
Kishida, N. & Sobey, R. J. 1988 Stokes theory for waves on linear shear current. J. Engng Mech. 114 (8), 13171334.
Longuet-Higgins, M. S. 1953 Mass transport in water waves. Phil. Trans. R. Soc. Lond. A 245, 535581.
Marko, J. R. 2003 Observations and analyses of an intense waves-in-ice event in the Sea of Okhotsk. J. Geophys. Res. 108, 3296.
Matioc, B.-V. 2014 Global bifurcation for water waves with capillary effects and constant vorticity. Monatsh. Maths 174, 459475.
Milewski, P. A., Vanden-Broeck, J.-M. & Wang, Z. 2011 Hydroelastic solitary waves in deep water. J. Fluid Mech. 679, 628640.
Milewski, P. A. & Wang, Z. 2013 Three dimensional flexural–gravity waves. Stud. Appl. Maths 131, 135148.
Milinazzo, F. A. & Saffman, P. G. 1990 Effect of a surface shear layer on gravity and gravity-capillary waves of permanent form. J. Fluid Mech. 216, 93101.
Părău, E. I. & Dias, F. 2002 Nonlinear effects in the response of a floating ice plate to a moving load. J. Fluid Mech. 460, 281305.
Peake, N. 2001 Nonlinear stability of a fluid-loaded elastic plate with mean flow. J. Fluid Mech. 434, 101118.
Peake, N. 2004 On the unsteady motion of a long fluid-loaded elastic plate with mean flow. J. Fluid Mech. 507, 335366.
Plotnikov, P. I. & Toland, J. F. 2011 Modelling nonlinear hydroelastic waves. Phil. Trans. R. Soc. Lond. A 369, 29422956.
Ribeiro, R., Milewski, P. A. & Nachbin, A. 2017 Flow structure beneath rotational water waves with stagnation points. J. Fluid Mech. 812, 792814.
van der Sanden, J. J. & Short, N. H. 2017 Radar satellites measure ice cover displacements induced by moving vehicles. Cold Regions Sci. Technol. 133, 5662.
Segal, B. L., Moldabayev, D., Kalisch, H. & Deconinck, B. 2017 Explicit solutions for a long wave model with constant vorticity. Eur. J. Mech.-B/Fluids 65, 247256.
Simmen, J. A. & Saffman, P. G. 1985 Steady deep water waves on a linear shear current. Stud. Appl. Maths 73, 3557.
Sprenger, P. & Hoefer, M. A. 2017 Shock waves in dispersive hydrodynamics with nonconvex dispersion. SIAM J. Appl. Maths 77 (1), 2650.
Sprenger, P. & Hoefer, M. A. 2020 Discontinuous shock solutions of the Whitham modulation equations and traveling wave solutions of higher order dispersive nonlinear wave equations. Nonlinearity 33, 32683302.
Squire, V., Hosking, R. J., Kerr, A. D. & Langhorne, P. J. 1996 Moving Loads on Ice Plates, Solid Mechanics and Its Applications. Kluwer.
Squire, V., Robinson, W., Langhorne, P. & Haskell, T. 1988 Vehicles and aircraft on floating ice. Nature 333 (6169), 159161.
Stokes, G. G. 1847 On the theory of oscillatory waves. Trans. Camb. Phil. Soc. 8, 441473.
Takizawa, T. 1988 Response of a floating sea ice sheet to a steadily moving load. J. Geophys. Res. 93, 51005112.
Teles Da Silva, A. F. & Peregrine, D. H. 1988 Steep, steady surface waves on water of finite depth with constant vorticity. J. Fluid Mech. 195, 281302.
Thomas, R., Kharif, C. & Manna, M. 2012 A nonlinear Schrödinger equation for water waves on finite depth with constant vorticity. Phys. Fluids 24, 127102.
Toland, J. F. 2007 Heavy hydroelastic travelling waves. Proc. R. Soc. A 463, 23712397.
Trichtchenko, O., Milewski, P. A., Părău, E. I. & Vanden-Broeck, J.-M. 2019 Stability of periodic travelling flexural–gravity waves in two dimensions. Stud. Appl. Maths 142, 6590.
Trichtchenko, O., Părău, E. I., Vanden-Broeck, J.-M. & Milewski, P. A. 2018 Solitary flexural–gravity waves in three dimensions. Phil. Trans. R. Soc. Lond. 376 (2129), 20170345.
Turner, R. E. L. & Vanden-Broeck, J.-M. 1988 Broadening of interfacial solitary waves. Phys. Fluids 31, 24862490.
Vanden-Broeck, J.-M. 1994 Steep solitary waves in water of finite depth with constant vorticity. J. Fluid Mech. 274, 339348.
Vanden-Broeck, J.-M. 2010 Gravity-Capillary Free-Surface Flows. Cambridge University Press.
Vanden-Broeck, J.-M. & Părău, E. I. 2011 Two-dimensional generalized solitary waves and periodic waves under an ice sheet. Phil. Trans. R. Soc. Lond. A 369, 29572972.
Wahlén, E. 2009 Steady water waves with a critical layer. J. Differ. Equ. 246, 24682483.
Whitham, G. B. 1974 Linear and Nonlinear Waves. John Wiley & Sons.
Wilton, J. R. 1915 On ripples. Phil. Mag. 29 (173), 688700.
Xia, X. & Shen, H. T. 2002 Nonlinear interaction of ice cover with shallow water waves in channels. J. Fluid Mech. 467, 259268.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Related content

Powered by UNSILO

Progressive flexural–gravity waves with constant vorticity

  • Z. Wang (a1) (a2) (a3), X. Guan (a1) (a3) and J.-M. Vanden-Broeck (a4)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.