Skip to main content Accessibility help
×
Home

The pre-transitional Klebanoff modes and other boundary-layer disturbances induced by small-wavelength free-stream vorticity

  • PIERRE RICCO (a1)

Abstract

The response of the Blasius boundary layer to free-stream vortical disturbances of the convected gust type is studied. The vorticity signature of the boundary layer is computed through the boundary-region equations, which are the rigorous asymptotic limit of the Navier–Stokes equations for low-frequency disturbances. The method of matched asymptotic expansion is employed to obtain the initial and outer boundary conditions. For the case of forcing by a two-dimensional gust, the effect of a wall-normal wavelength comparable with the boundary-layer thickness is taken into account. The gust viscous dissipation and upward displacement due to the mean boundary layer produce significant changes on the fluctuations within the viscous region. The same analysis also proves useful for computing to second-order accuracy the boundary-layer response induced by a three-dimensional gust with spanwise wavelength comparable with the boundary-layer thickness. It also follows that the boundary-layer fluctuations of the streamwise velocity match the corresponding free-stream velocity component. The velocity profiles are compared with experimental data, and good agreement is attained.

The generation of Tollmien–Schlichting waves by the nonlinear mixing between the two-dimensional unsteady vorticity fluctuations and the mean flow distortion induced by localized wall roughness and suction is also investigated. Gusts with small wall-normal wavelengths generate significantly different amplitudes of the instability waves for a selected range of forcing frequencies. This is primarily due to the disparity between the streamwise velocity fluctuations in the free stream and within the boundary layer.

Copyright

Corresponding author

Email address for correspondence: pierre.ricco@kcl.ac.uk

References

Hide All
Allen, L. & Bridges, T. B. 2003 a Hydrodynamic stability of the Ekman boundary layer including interaction with a compliant surface: a numerical framework. Eur. J. Mech. B 22, 239258.
Allen, L. & Bridges, T. J. 2002 Numerical exterior algebra and the compound matrix method. Numer. Math. 92, 197232.
Allen, L. & Bridges, T. J. 2003 b Flow past a swept wing with a compliant surface: stabilizing the attachment-line boundary layer. Studies Appl. Math. 110, 333349.
Andersson, P., Berggren, M. & Henningson, D. S. 1999 Optimal disturbances and bypass transition in boundary layers. Phys. Fluids 11 (1), 134150.
Anthony, R. J., Jones, T. V. & LaGraff, J. E. 2005 High frequency surface heat flux imaging of bypass transition. J. Turbom. 127, 241250.
Arnal, D. & Juillen, J. C. 1978 Contribution expérimental a l'etude de la receptivite d'une couche limite laminaire, a la turbulence de l'ecoulement general. Rep. No. CERT RT 1/5018 AYD. ONERA.
Batchelor, G. K. 1946 The theory of axisymmetric turbulence. Proc. R. Soc. Lond. A 186 (1007), 480502.
Bradshaw, P. 1965 The effect of wind-tunnel screens on nominally two-dimensional boundary layers. J. Fluid Mech. 22, 679687.
Cebeci, T. 2002 Convective Heat Transfer. Springer.
Chandrasekhar, S. 1950 The theory of axisymmetric turbulence. Proc. R. Soc. Lond. A 242 (855), 557577.
Choudhari, M. 1994 a Localized and distributed boundary-layer receptivity to convected unsteady wake in free stream. Contractor Rep. 4578. NASA Langley Research Center.
Choudhari, M. 1994 b Roughness-induced generation of crossflow vortices in three-dimensional boundary layers. Theoret. Comput. Fluid Dyn. 6, 130.
Choudhari, M. 1996 Boundary layer receptivity to three-dimensional unsteady vortical disturbances in the free stream. Paper 96-0181. AIAA.
Choudhari, M. & Streett, C. L. 1992 A finite Reynolds number approach for the prediction of boundary-layer receptivity in localized regions. Phys. Fluids 4 (11), 24952514.
Crow, S. C. 1966 The spanwise perturbation of two-dimensional boundary-layers. J. Fluid Mech. 24, 153164.
Davey, A. 1982 A difficult numerical calculation concerning the stability of the Blasius boundary layer. In Stability in the Mechanics of Continua (ed. Schroeder, F. H.), pp. 365372. Springer.
Dietz, A. J. 1996 Distributed boundary layer receptivity to convected vorticity. Paper 96-2083. AIAA.
Dietz, A. J. 1998 Boundary-layer receptivity to transient convected disturbances. AIAA J. 36, 11711177.
Dietz, A. J. 1999 Local boundary-layer receptivity to a convected free-stream disturbance. J. Fluid Mech. 378, 291317.
Dryden, H. L. 1936 Air flow in the boundary layer near a plate. Rep. 562. NACA.
Duck, P. W., Ruban, A. I. & Zhikharev, C. N. 1996 The generation of Tollmien--Schlichting waves by free-stream turbulence. J. Fluid Mech. 312, 341371.
Ellingsen, T. & Palm, E. 1975 Stability of linear flow. Phys. Fluids 18 (4), 487488.
Fasel, H. 2002 Numerical investigation of the interaction of the Klebanoff-mode with a Tollmien–Schlichting wave. J. Fluid Mech. 450, 133.
Fransson, J. H. M., Matsubara, M. & Alfredsson, P. H. 2005 Transition induced by free-stream turbulence. J. Fluid Mech. 527, 125.
Goldstein, M. E. 1978 Unsteady vortical and entropic distortions of potential flows round arbitrary obstacles. J. Fluid Mech. 89, 433468.
Goldstein, M. E. 1983 The evolution of Tollmein–Schlichting waves near a leading edge. J. Fluid Mech. 127, 5981.
Goldstein, M. E. 1985 Scattering of acoustic waves into Tollmien–Schlichting waves by small streamwise variations in surface geometry. J. Fluid Mech. 154, 509529.
Goldstein, M. E. & Leib, S. J. 1993 Three-dimensional boundary layer instability and separation induced by small-amplitude streamwise vorticity in the upstream flow. J. Fluid Mech. 246, 2141.
Goldstein, M. E., Leib, S. J. & Cowley, S. J. 1992 Distortion of a flat plate boundary layer by free stream vorticity normal to the plate. J. Fluid Mech. 237, 231260.
Goldstein, M. E. & Sescu, A. 2008 Boundary-layer transition at high free-stream disturbance levels – beyond Klebanoff modes. J. Fluid Mech. 613, 95124.
Goldstein, M. E. & Wundrow, D. W. 1998 On the environmental realizability of algebraically growing disturbances and their relation to Klebanoff modes. Theoret. Comput. Fluid Dyn. 10, 171186.
Gulyaev, A. N., Kozlov, V. E., Kuzenetsov, V. R., Mineev, B. I. & Sekundov, A. N. 1989 Interaction of a laminar boundary layer with external turbulence. Izv. Akad. Nauk. SSSR Mekh. Zhid. Gaza 6, 700710.
Hernon, D., Walsh, E. J. & McEligot, D. M. 2007 Experimental investigation into the routes to bypass transition and the shear-sheltering phenomenon. J. Fluid Mech. 591, 461479.
Huang, J-C. & Johnson, M. W. 2007 The influence of compliant surfaces on bypass transition. Exp. Fluids 42, 711718.
Inasawa, A., Lundell, F., Matsubara, M., Kohama, Y. & Alfredsson, P. H. 2003 Velocity statistics and flow structures observed in bypass transition using stereo PTV. Exp. Fluids 34, 242252.
Jacobs, R. G. & Durbin, P. A. 2001 Simulation of bypass transition. J. Fluid Mech. 428, 185212.
Kemp, N. 1951 The laminar three-dimensional boundary layer and a study of the flow past a side edge. MSc thesis, Cornell University, Ithaca, NY.
Kendall, J. M. 1985 Experimental study of disturbances produced in a pre-transitional boundary layer. Paper 85-1695. AIAA.
Kendall, J. M. 1990 Boundary layer receptivity to free stream turbulence. Paper 90-1504. AIAA.
Kendall, J. M. 1991 Studies on laminar boundary layer receptivity to free-stream turbulence near a leading edge. In Boundary Layer Stability and Transition to Turbulence (ed. Reda, D. C., Reed, H. L. & Kobayashi, R.), vol. 114, pp. 2330. ASME FED.
Kerschen, E. J. 1991 Linear and nonlinear receptivity to vortical free-stream disturbances. In Boundary Layer Stability and Turbulence (ed. Reda, D. C., Reed, H. L. & Kobayashi, R. K.), vol. 114, pp. 4348. ASME FED.
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.
Klebanoff, P. S. 1971 Effect of free-stream turbulence on a laminar boundary layer. Bull. Am. Phys. Soc. 16, 1323.
Landahl, M.T. 1980 A note on an algebraic instability of inviscid parallel shear flows. J. Fluid Mech. 98, 243251.
Lardeau, S., Li, N. & Leschziner, M. A. 2007 Large eddy simulations of a transitional boundary layers at high free-stream turbulence intensity and implications for RANS modelling. J. Turbom. 129, 17.
Leib, S. J., Wundrow, D. W. & Goldstein, M. E. 1999 Effect of free-stream turbulence and other vortical disturbances on a laminar boundary layer. J. Fluid Mech. 380, 169203.
Liu, Y., Zaki, T. A. & Durbin, P. A. 2008 Boundary-layer transition by interaction of discrete and continuous modes. J. Fluid Mech. 604, 199233.
Luchini, P. 2000 Reynolds-number-independent instability of the boundary layer over a flat surface: optimal perturbations. J. Fluid Mech. 404, 289309.
Malik, M. R. 1990 Numerical methods for hypersonic boundary layer stability. J. Comput. Phys. 86, 376413.
Mans, J., Kadijk, E. C., de Lange, H. C. & van Steenhoven, A. A. 2005 Breakdown in a boundary layer exposed to free-stream turbulence. Exp. Fluids 39, 10711083.
Matsubara, M. & Alfredsson, P. H. 2001 Disturbance growth in boundary layers subjected to free-stream turbulence. J. Fluid Mech. 430, 149168.
Nagarajan, S., Lele, S. K. & Ferziger, J. H. 2007 Leading-edge effects in bypass transition. J. Fluid Mech. 572, 471504.
Ng, B. S. & Reid, W. H. 1979 An initial value method for eigenvalue problems using compound matrices. J. Comput. Phys. 30, 125136.
Orr, W. M. F. 1907 The stability or instability of steady motions of a perfect liquid and of a viscous liquid. Part I. A perfect liquid. Part II. A viscous liquid. Proc. R. Irish Acad. 27, 938 and 69138.
Ovchinnikov, V., Choudhari, M. M. & Piomelli, U. 2008 Numerical simulations of boundary-layer bypass transition due to high-amplitude free-stream turbulence. J. Fluid Mech. 613, 135169.
Ricco, P., Tran, D.-L. & Ye, G. 2009 Wall heat transfer effects on Klebanoff modes and Tollmien–Schlichting waves in a compressible boundary layer. Phys. Fluids 21, 118 (024106).
Ricco, P. & Wu, X. 2007 Response of a compressible laminar boundary layer to free-stream vortical disturbances. J. Fluid Mech. 587, 97138.
Ruban, A. I. 1985 On the generation of Tollmien–Schlichting waves by sound. Fluid Dyn. 25 (2), 213221.
Schewe, G. 1983 On the structure and resolution of wall-pressure fluctuations associated with turbulent boundary-layer flow. J. Fluid Mech. 134, 311328.
Schlichting, H. 1933 Zur Entstehung der Turbulenz bei der Plattenströmung. Nachr. Ges. Wiss. Göttingen Math. Phys. Klasse, 181–208.
Schubauer, G. B. & Skramstad, H. K 1947 Laminar boundary-layer oscillations and transition on a flat plate. Rep. No. NACA-TN-909. NACA.
Sengupta, T. K. 1992 Solution of the Orr–Sommerfeld equation for high wavenumbers. Comput. Fluids 21 (2), 301303.
Sengupta, T. K. & Subbaiah, K. V. 2006 Spatial stability for mixed convection boundary layer over a heated horizontal plate. Studies Appl. Math. 117, 265298.
Sobey, I. J. 2001 Introduction to Interactive Boundary Layer Theory. Oxford University Press.
Sommerfeld, A. 1908 Ein Beitrag zur hydrodynamischen Erklarung der turbulenten Flussigkeitsbewegungen. Atti Fourth Congr. Intl Math. Roma 3, 116124.
Spalart, P. R. 1988 Direct simulation of a turbulent boundary layer up to Re θ = 1410. J. Fluid Mech. 187, 6198.
Taylor, G. I. 1939 Some recent developments in the study of turbulence. In Fifth International Congress for Applied Mechanics (ed. Hartog, J. P. Den & Peters, H.), pp. 294310. Wiley/Chapman and Hall.
Tollmien, W. 1929 Uber die Entstehung der Turbulenz 1. Mitteilung. Nachr. Ges. Wiss. Göttingen Math. Phys. Klasse, 21–44. Translated into English in 1931 as as Rep. No. NACA-TM-609, NACA.
Tsuji, Y., Fransson, J. H. M., Alfredsson, P. H. & Johansson, A. V. 2007 Pressure statistics and their scaling in high-Reynolds-number turbulent boundary layers. J. Fluid Mech. 585, 140.
Volino, R. 2005 An investigation of the scales in transitional boundary layers under high free-stream turbulence conditions. Exp. Fluids 38, 516533.
Watmuff, J. H. 1998 Detrimental effects of almost immensurably small free stream nonuniformities generated by wind-tunnel screens. AIAA J. 36 (3), 379386.
Westin, K. J. A., Boiko, A. V., Klingmann, B. G. B., Kozlov, V. V. & Alfredsson, P. H. 1994 Experiments in a boundary layer subjected to free stream turbulence. Part 1. Boundary layer structure and receptivity. J. Fluid Mech. 281, 193218.
Wiegel, M. & Wlezien, R. W. 1993 Acoustic receptivity of laminar boundary layers over wavy walls. Paper 93-3280. AIAA.
Wu, X. 2001 a On local boundary-layer receptivity to vortical disturbances in the free-stream. J. Fluid Mech. 449, 373393.
Wu, X. 2001 b Receptivity of boundary layers with distributed roughness to vortical and acoustic disturbances: A second-order asymptotic theory and comparison with experiments. J. Fluid Mech. 431, 91133.
Wu, X. & Choudhari, M. 2003 Linear and nonlinear instabilities of a Blasius boundary layer perturbed by streamwise vortices. Part 2. Intermittent instability induced by long-wavelength Klebanoff modes. J. Fluid Mech. 483, 249286.
Wundrow, D. W. & Goldstein, M. E. 2001 Effect on a laminar boundary layer of small-amplitude streamwise vorticity in the upstream flow. J. Fluid Mech. 426, 229262.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

The pre-transitional Klebanoff modes and other boundary-layer disturbances induced by small-wavelength free-stream vorticity

  • PIERRE RICCO (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed