Skip to main content Accessibility help
×
Home

Pressure–strain terms in Langmuir turbulence

  • Brodie C. Pearson (a1) (a2), Alan L. M. Grant (a3) and Jeff A. Polton (a4)

Abstract

This study investigates the pressure–strain tensor ( $\unicode[STIX]{x1D72B}$ ) in Langmuir turbulence. The pressure–strain tensor is determined from large-eddy simulations (LES), and is partitioned into components associated with the mean current shear (rapid), the Stokes shear and the turbulent–turbulent (slow) interactions. The rapid component can be parameterized using existing closure models, although the coefficients in the closure models are particular to Langmuir turbulence. A closure model for the Stokes component is proposed, and it is shown to agree with results from the LES. The slow component of $\unicode[STIX]{x1D72B}$ does not agree with existing ‘return-to-isotropy’ closure models for five of the six components of the Reynolds stress tensor, and a new closure model is proposed that accounts for these deviations which vary systematically with Langmuir number, $La_{t}$ , and depth. The implications of these results for second- and first-order closures of Langmuir turbulence are discussed.

Copyright

Corresponding author

Email address for correspondence: brodie_pearson@brown.edu

References

Hide All
Andren, A. & Moeng, C. H. 1993 Single-point closures in a neutrally stratified boundary-layer. J. Atmos. Sci. 50 (20), 33663379.10.1175/1520-0469(1993)050<3366:SPCIAN>2.0.CO;2
Belcher, S. E., Grant, A. L. M., Hanley, K. E., Fox-Kemper, B., Van Roekel, L., Sullivan, P. P., Large, W. G., Brown, A., Hines, A., Calvert, D. et al. 2012 A global perspective on Langmuir turbulence in the ocean surface boundary layer. Geophys. Res. Lett. 39, L18605.
Bou-Zeid, E., Gao, X., Ansorge, C. & Katul, G. G. 2018 On the role of return to isotropy in wall-bounded turbulent flows with buoyancy. J. Fluid Mech. 856, 6178.10.1017/jfm.2018.693
Champagne, F. H., Harris, V. G. & Corrsin, S. 1970 Experiments on nearly homogeneous turbulent shear flow. J. Fluid Mech. 41, 81139.
Choi, K. S. & Lumley, J. L. 2001 The return to isotropy of homogeneous turbulence. J. Fluid Mech. 436, 5984.10.1017/S002211200100386X
Chung, M. K. & Kim, S. K. 1995 A nonlinear return-to-isotropy model with Reynolds number and anisotropy dependency. Phys. Fluids 7 (6), 14251437.10.1063/1.868760
Craik, A. D. D. & Leibovich, S. 1976 Rational model for Langmuir circulations. J. Fluid Mech. 73, 401426.
Crow, S. C. 1968 Viscoelastic properties of fine-grained incompressible turbulence. J. Fluid Mech. 33 (01), 120.
D’Alessio, S. J. D., Abdella, K. & McFarlane, N. A. 1998 A new second-order turbulence closure scheme for modeling the oceanic mixed layer. J. Phys. Oceanogr. 28 (8), 16241641.
Daly, B. J. & Harlow, F. H. 1970 Transport equations in turbulence. Phys. Fluids 13 (11), 26342649.
D’Asaro, E. A., Thomson, J., Shcherbina, A. Y., Harcourt, R. R., Cronin, M. F., Hemer, M. A. & Fox-Kemper, B. 2014 Quantifying upper ocean turbulence driven by surface waves. Geophys. Res. Lett. 41 (1), 102107.10.1002/2013GL058193
D’Asaro, E. A. 2001 Turbulent vertical kinetic energy in the ocean mixed layer. J. Phys. Oceanogr. 31, 35303537.10.1175/1520-0485(2002)031<3530:TVKEIT>2.0.CO;2
Ding, M., Nguyen, K. X., Liu, S., Otte, M. J. & Tong, C. 2018 Investigation of the pressure–strain-rate correlation and pressure fluctuations in convective and near neutral atmospheric surface layers. J. Fluid Mech. 854, 88120.
Gerolymos, G. A., Lo, C., Vallet, I. & Younis, B. A. 2012 Term-by-term analysis of near-wall second-moment closures. AIAA J. 50 (12), 28482864.10.2514/1.J051654
Grant, A. L. M. & Belcher, S. E. 2009 Characteristics of Langmuir turbulence in the ocean mixed layer. J. Phys. Oceanogr. 39, 18711887.
Hamlington, P. E. & Dahm, W. J. A. 2009 Nonlocal form of the rapid pressure–strain correlation in turbulent flows. Phys. Rev. E 80 (4), 046311.
Hamlington, P. E., Van Roekel, L. P., Fox-Kemper, B., Julien, K. & Chini, G. P. 2014 Langmuir-submesoscale interactions: descriptive analysis of multiscale frontal spin-down simulations. J. Phys. Oceanogr 117, C05001.
Hanjalic, K. & Launder, B. E. 1972 Reynolds stress model of turbulence and its application to thin shear flows. J. Fluid Mech. 52 (APR25), 609.10.1017/S002211207200268X
Harcourt, R. R. 2013 A second-moment closure model of Langmuir turbulence. J. Phys. Oceanogr. 43 (4), 673697.
Harcourt, R. R. 2015 An improved second-moment closure model of Langmuir turbulence. J. Phys. Oceanogr. 45 (1), 84103.10.1175/JPO-D-14-0046.1
Heinze, R., Mironov, D. & Raasch, S. 2016 Analysis of pressure–strain and pressure gradient-scalar covariances in cloud-topped boundary layers: a large-eddy simulation study. J. Adv. Model. Earth Sys. 8 (1), 330.
Huang, N. E. 1979 On surface drift currents in the ocean. J. Fluid Mech. 91 (01), 191208.
Kantha, L. H. & Clayson, C. A. 1994 An improved mixed-layer model for geophysical applications. J. Geophys. Res. 99 (C12), 2523525266.10.1029/94JC02257
Kantha, L. H. & Clayson, C. A. 2004 On the effect of surface gravity waves on mixing in the oceanic mixed layer. Ocean Model. 6 (2), 101124.
Kukulka, T. & Harcourt, R. R. 2017 Influence of stokes drift decay scale on Langmuir turbulence. J. Phys. Oceanogr. 47 (7), 16371656.
Kukulka, T., Plueddemann, A. J. & Sullivan, P. P. 2013 Inhibited upper ocean restratification in nonequilibrium swell conditions. Geophys. Res. Lett. 40 (14), 36723676.
Large, W. G., McWilliams, J. C. & Doney, S. C. 1994 Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev. Geophys. 32 (4), 363403.
Launder, B. E., Reece, G. J. & Rodi, W. 1975 Progress in development of a Reynolds-stress turbulence closure. J. Fluid Mech. 68 (APR15), 537566.10.1017/S0022112075001814
Li, Q., Webb, A., Fox-Kemper, B., Craig, A., Danabasoglu, G., Large, W. G. & Vertenstein, M. 2016 Langmuir mixing effects on global climate: WAVEWATCH III in CESM. Ocean Model. 103, 145160.10.1016/j.ocemod.2015.07.020
Liu, J., Liang, J.-H., McWilliams, J. C., Sullivan, P. P., Fan, Y. & Chen, Q. 2018 Effect of planetary rotation on oceanic surface boundary layer turbulence. J. Phys. Oceanogr. 48 (9), 20572080.10.1175/JPO-D-17-0150.1
Lumley, J. L. 1975 Pressure–strain correlation. Phys. Fluids 18 (6), 750.10.1063/1.861205
McWilliams, J. C., Huckle, E., Liang, J. & Sullivan, P. P. 2014 Langmuir turbulence in swell. J. Phys. Oceanogr. 44, 870890.10.1175/JPO-D-13-0122.1
McWilliams, J. C., Huckle, E., Liang, J.-H. & Sullivan, P. P. 2012 The wavy ekman layer: langmuir circulations, breaking waves, and Reynolds stress. J. Phys. Oceanogr. 42 (11), 17931816.10.1175/JPO-D-12-07.1
McWilliams, J. C., Sullivan, P. P. & Moeng, C. H. 1997 Langmuir turbulence in the ocean. J. Fluid Mech. 334, 130.10.1017/S0022112096004375
Mellor, G. L. & Yamada, T. 1974 A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci. 31 (7), 17911806.
Mironov, D. V. 2001 Pressure-potential-temperature covariance in convection with rotation. Q. J. R. Meteorol. Soc. 127 (571, Part a), 89110.
Mironov, D. V., Gryanik, V. M., Moeng, C.-H., Olbers, D. J. & Warncke, T. H. 2000 Vertical turbulence structure and second-moment budgets in convection with rotation: a large-eddy simulation study. Q. J. R. Meteor. Soc. 126 (563), 477515.10.1002/qj.49712656306
Mironov, D. V. 2009 Turbulence in the lower troposphere: second-order closure and mass-flux modelling frameworks. In Interdisciplinary Aspects of Turbulence (ed. Hillebrandt, W. & Kupka, F.), Lecture Notes in Physics, vol. 756, pp. 161221.
Moeng, C. H. & Wyngaard, J. C. 1986 An analysis of closures for pressure-scalar covariances in the convective boundary layer. J. Atmos. Sci. 43 (21), 24992513.
Pearson, B. C. 2018 Turbulence-induced anti-stokes flow and the resulting limitations of large-eddy simulation. J. Phys. Oceanogr. 48 (1), 117122.
Pearson, B. C., Grant, A. L. M., Polton, J. A. & Belcher, S. E. 2015 Langmuir turbulence and surface heating in the ocean surface boundary layer. J. Phys. Oceanogr. 45 (12), 28972911.
Phillips, O. M. 1958 The equilibrium range in the spectrum of wind-generated waves. J. Fluid Mech. 4 (4), 426434.
Polton, J. A., Lewis, D. M. & Belcher, S. E. 2005 The role of wave-induced Coriolis-Stokes forcing on the wind-driven mixed layer. J. Phys. Oceanogr. 35 (4), 444457.10.1175/JPO2701.1
Polton, J. A. & Belcher, S. E. 2007 Langmuir turbulence and deeply penetrating jets in an unstratified mixed layer. J. Geophys. Res. 112, C09020.
Pope, S. B. 2001 Turbulent Flows. Cambridge University Press.
Poroseva, S. V. 2001 Modeling the‘rapid’ part of the velocity/pressure-gradient correlation in inhomogeneous turbulence. Centre for Turbulence Research, Ann. Res. Briefs.
Poroseva, S. V. 2014 The effect of a pressure-containing correlation model on near-wall flow simulations with Reynolds stress transport models. Trans. ASME J. Fluids Engng 136 (6), 060909.
Reichl, B. G., Wang, D., Hara, T., Ginis, I. & Kukulka, T. 2016 Langmuir turbulence parameterization in tropical cyclone conditions. J. Phys. Oceanogr. 46 (3), 863886.10.1175/JPO-D-15-0106.1
Roekel, L. P. V., Fox-Kemper, B., Sullivan, P. P., Hamlington, P. E. & Haney, S. R. 2012 The form and orientation of Langmuir cells for mis-aligned winds and waves. J. Geophys. Res. 117, CO5001.
Rotta, J. 1951 Statistische Theorie nichthomogener Turbulenz. Z. Phys. 129 (6), 547572.
Shutts, G. J. & Gray, M. E. B. 1994 A numerical modelling study of the geostrophic adjustment process following deep convection. Q. J. R. Meteorol. Soc. 120 (519), 11451178.
Skyllingstad, E. & Denbo, D. 1995 An ocean large-eddy simulation of langmuir circulations and convection in the surface mixed layer. J. Geophys. Res. 100 (C5), 85018522.10.1029/94JC03202
Speziale, C. G., Sarkar, S. & Gatski, T. B. 1991 Modeling the pressure–strain correlation of turbulence: an invariant dynamic-systems approach. J. Fluid Mech. 227, 245272.
Stokes, G. G. 1847 On the theory of oscillatory waves. Trans. Camb. Phil. Soc. 8, 441473.
Sullivan, P. P. & McWilliams, J. C. 2018 Frontogenesis and frontal arrest of a dense filament in the oceanic surface boundary layer. J. Fluid Mech. 837, 341380.10.1017/jfm.2017.833
Sutherland, G., Christensen, K. H. & Ward, B. 2014 Evaluating Langmuir turbulence parameterizations in the ocean surface boundary layer. J. Geophys. Res. 119 (3), 18991910.
Suzuki, N. & Fox-Kemper, B. 2016 Understanding Stokes forces in the wave-averaged equations. J. Geophys. Res. 121 (5), 35793596.
Teixeira, M. A. C. 2011 A linear model for the structure of turbulence beneath surface water waves. Ocean Model. 36 (1–2), 149162.10.1016/j.ocemod.2010.10.007
Teixeira, M. A. C. & Belcher, S. E. 2002 On the distortion of turbulence by a progressive surface wave. J. Fluid Mech. 458, 229267.10.1017/S0022112002007838
Teixeira, M. A. C. & Belcher, S. E. 2010 On the structure of Langmuir turbulence. Ocean Model. 31 (3–4), 105119.
Townsend, A. A. 1954 The uniform distortion of homogeneous turbulence. Q. J. Mech. Appl. Maths. 7, 104127.10.1093/qjmam/7.1.104
Tseng, R.-S. & D’Asaro, E. A. 2004 Measurements of turbulent vertical kinetic energy in the ocean mixed layer from Lagrangian floats. J. Phys. Oceanogr. 34 (9), 19841990.
Uberoi, M. S. 1957 Equipartition of energy and local isotropy in turbulent flows. J. Appl. Phys. 28 (10), 11651170.10.1063/1.1722600
Umlauf, L. & Burchard, H. 2005 Second-order turbulence closure models for geophysical boundary layers. A review of recent work. Cont. Shelf Res. 25 (7–8), 795827.
Webb, A. & Fox-Kemper, B. 2011 Wave spectral moments and Stokes drift estimation. Ocean Model. 40 (3), 273288.10.1016/j.ocemod.2011.08.007
Weinstock, J. & Burk, S. 1985 Theoretical pressure–strain term, experimental comparison, and resistance to large anisotropy. J. Fluid Mech. 154 (MAY), 429443.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Pressure–strain terms in Langmuir turbulence

  • Brodie C. Pearson (a1) (a2), Alan L. M. Grant (a3) and Jeff A. Polton (a4)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed