Skip to main content Accessibility help
×
Home

Pressure-driven flow across a hyperelastic porous membrane

  • Ryungeun Song (a1), Howard A. Stone (a2), Kaare H. Jensen (a3) and Jinkee Lee (a1)

Abstract

We report an experimental investigation of pressure-driven flow of a viscous liquid across thin polydimethylsiloxane (PDMS) membranes. Our experiments revealed a nonlinear relation between the flow rate $Q$ and the applied pressure drop $\unicode[STIX]{x0394}p$ , in apparent disagreement with Darcy’s law, which dictates a linear relationship between flow rate, or average velocity, and pressure drop. These observations suggest that the effective permeability of the membrane decreases with pressure due to deformation of the nanochannels in the PDMS polymeric network. We propose a model that incorporates the effects of pressure-induced deformation of the hyperelastic porous membrane at three distinct scales: the membrane surface area, which increases with pressure, the membrane thickness, which decreases with pressure, and the structure of the porous material, which is deformed at the nanoscale. With this model, we are able to rationalize the deviation between Darcy’s law and the data. Our result represents a novel case in which macroscopic deformations can impact the microstructure and transport properties of soft materials.

Copyright

Corresponding author

Email address for correspondence: lee.jinkee@skku.edu

References

Hide All
Amabili, M., Balasubramanian, P., Breslavsky, I. D., Ferrari, G., Garziera, R. & Riabova, K. 2016 Experimental and numerical study on vibrations and static deflection of a thin hyperelastic plate. J. Sound Vib. 385, 8192.
Bhanushali, D., Kloos, S., Kurth, C. & Bhattacharyya, D. 2001 Performance of solvent-resistant membranes for non-aqueous systems: solvent permeation results and modeling. J. Membr. Sci. 189 (1), 121.
Bouremel, Y., Madaan, S., Lee, R. M. H., Eames, I., Wojcik, A. & Khaw, P. T. 2017 Pursing of planar elastic pockets. J. Fluids Struct. 70, 261275.
Bruus, H. 2007 Theoretical Microfluidics. Oxford University Press.
Chang, K. S., Chung, Y. C., Yang, T. H., Lue, S. J., Tung, K. L. & Lin, Y. F. 2012 Free volume and alcohol transport properties of PDMS membranes: insights of nano-structure and interfacial affinity from molecular modeling. J. Membr. Sci. 417, 119130.
Choi, C. H., Westin, K., Johan, A. & Breuer, K. 2003 Apparent slip flows in hydrophilic and hydrophobic microchannels. Phys. Fluids 15 (10), 28972902.
Darvishmanesh, S., Buekenhoudt, A., Degrève, J. & Van der Bruggen, B. 2009 General model for prediction of solvent permeation through organic and inorganic solvent resistant nanofiltration membranes. J. Membr. Sci. 334 (1), 4349.
Dhopeshwarkar, R., Crooks, R., Hlushkou, D. & Tallarek, U. 2008 Transient effects on microchannel electrokinetic filtering with an ion-permselective membrane. Anal. Chem. 80 (4), 10391048.
Duffy, D. C., McDonald, J. C., Schueller, O. J. A. & Whitesides, G. M. 1998 Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 70 (23), 49744984.
Ebert, K., Koll, J., Dijkstra, M. F. J. & Eggers, M. 2006 Fundamental studies on the performance of a hydrophobic solvent stable membrane in non-aqueous solutions. J. Membr. Sci. 285 (1), 7580.
Firpo, G., Angeli, E., Repetto, L. & Valbusa, U. 2015 Permeability thickness dependence of polydimethylsiloxane (PDMS) membranes. J. Membr. Sci. 481, 18.
Gangi, A. F. 1978 Variation of whole and fractured porous rock permeability with confining pressure. Intl J. Rock Mech. Min Sci. Geomech. Abstr. 15 (5), 249257.
Geens, J., Van der Bruggen, B. & Vandecasteele, C. 2004 Characterisation of the solvent stability of polymeric nanofiltration membranes by measurement of contact angles and swelling. Chem. Engng Sci. 59 (5), 11611164.
Hu, H., Bao, L., Priezjev, N. V. & Luo, K. 2017 Identifying two regimes of slip of simple fluids over smooth surfaces with weak and strong wall–fluid interaction energies. J. Chem. Phys. 146 (3), 034701.
Ismail, A. E., Grest, G. S., Heine, D. R., Stevens, M. J. & Tsige, M. 2009 Interfacial structure and dynamics of siloxane systems: PDMS-vapor and PDMS-water. Macromolecules 42 (8), 31863194.
Jeong, O. C. & Konishi, S. 2007 Fabrication and drive test of pneumatic PDMS micro pump. Sensors Actuators A 135 (2), 849856.
Jo, B. H., Van Lerberghe, L. M., Motsegood, K. M. & Beebe, D. J. 2000 Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer. J. Microelectromech. Syst. 9 (1), 7681.
Johnston, I. D., McCluskey, D. K., Tan, C. K. L. & Tracey, M. C. 2014 Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. J. Micromech. Microengng 24 (3), 035017.
Koresh, J. E. & Sofer, A. 1983 Molecular sieve carbon permselective membrane. Part I. Presentation of a new device for gas mixture separation. Sep. Sci. Technol. 18 (8), 723734.
Makrodimitri, Z. A. & Economou, I. G. 2008 Atomistic simulation of poly(dimethylsiloxane) permeability properties to gases and n-alkanes. Macromolecules 41 (15), 58995907.
Nunes, L. C. S. 2011 Mechanical characterization of hyperelastic polydimethylsiloxane by simple shear test. Mater. Sci. Engng A 528 (3), 17991804.
Peng, F., Jiang, Z., Hu, C., Wang, Y., Xu, H. & Liu, J. 2006 Removing benzene from aqueous solution using CMS-filled PDMS pervaporation membranes. Sep. Purif. Technol. 48 (3), 229234.
Pernaut, J. M. & Reynolds, J. R. 2000 Use of conducting electroactive polymers for drug delivery and sensing of bioactive molecules. A redox chemistry approach. J. Phys. Chem. B 104 (17), 40804090.
Phillip, W. A., Amendt, M., O’Neill, B., Chen, L., Hillmyer, M. A. & Cussler, E. L. 2009 Diffusion and flow across nanoporous polydicyclopentadiene-based membranes. ACS Appl. Mater. Interfaces 1 (2), 472480.
Priezjev, N. V. 2007 Effect of surface roughness on rate-dependent slip in simple fluids. J. Chem. Phys. 127 (14), 144708.
Priske, M., Lazar, M., Schnitzer, C. & Baumgarten, G. 2016 Recent applications of organic solvent nanofiltration. Chem. Ing. Tech. 88 (1–2), 3949.
Ramos-Alvarado, B., Kumar, S. & Peterson, G. P. 2016 Wettability transparency and the quasiuniversal relationship between hydrodynamic slip and contact angle. Appl. Phys. Lett. 108 (7), 074105.
Razdolsky, A. G. 2015 Large deflections of elastic rectangular plates. Intl J. Comput. Meth. Engng Sci. Mech. 16 (6), 354361.
Rego, R. & Mendes, A. 2004 Carbon dioxide/methane gas sensor based on the permselectivity of polymeric membranes for biogas monitoring. Sensors Actuators B 103 (1), 26.
Robinson, J. P., Tarleton, E. S., Ebert, K., Millington, C. R. & Nijmeijer, A. 2005 Influence of cross-linking and process parameters on the separation performance of poly(dimethylsiloxane) nanofiltration membranes. Ind. Engng Chem. Res. 44 (9), 32383248.
Sanaei, P. & Cummings, L. J. 2017 Flow and fouling in membrane filters: effects of membrane morphology. J. Fluid Mech. 818, 744771.
Sanaei, P. & Cummings, L. J. 2018 Membrane filtration with complex branching pore morphology. Phys. Rev. Fluids 3, 094305.
Selvadurai, A. P. S. & Shi, M. 2012 Fluid pressure loading of a hyperelastic membrane. Intl J. Non-Linear Mech. 47 (2), 228239.
Soltane, H. B., Roizard, D. & Favre, E. 2013 Effect of pressure on the swelling and fluxes of dense PDMS membranes in nanofiltration: an experimental study. J. Membr. Sci. 435, 110119.
Stafie, N., Stamatialis, D. F. & Wessling, M. 2005 Effect of PDMS cross-linking degree on the permeation performance of PAN/PDMS composite nanofiltration membranes. Sep. Purif. Technol. 45 (3), 220231.
Tsuru, T., Sudou, T., Kawahara, S., Yoshioka, T. & Asaeda, M. 2000 Permeation of liquids through inorganic nanofiltration membranes. J. Colloid Interface Sci. 228 (2), 292296.
Vankelecom, I. F. J., De Smet, K., Gevers, L. E. M., Livingston, A., Nair, D., Aerts, S., Kuypers, S. & Jacobs, P. A. 2004 Physico-chemical interpretation of the SRNF transport mechanism for solvents through dense silicone membranes. J. Membr. Sci. 231 (1), 99108.
Vankelecom, I. F. J., Dotremont, C., Morobe, M., Uytterhoeven, J. B. & Vandecasteele, C. 1997 Zeolite-filled PDMS membranes. 1. Sorption of halogenated hydrocarbons. J. Phys. Chem. B 101 (12), 21542159.
Wang, D. & El-Sheikh, A. I. 2005 Large-deflection mathematical analysis of rectangular plates. J. Engng Mech. ASCE 131 (8), 809821.
Zhang, J., Standifird, W. B., Roegiers, J. C. & Zhang, Y. 2007 Stress-dependent fluid flow and permeability in fractured media: from lab experiments to engineering applications. Rock Mech. Rock Engng 40 (1), 321.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed