Skip to main content Accessibility help
×
×
Home

Pressure impulse theory for a slamming wave on a vertical circular cylinder

  • Amin Ghadirian (a1) and Henrik Bredmose (a1)

Abstract

A pressure impulse model is presented for wave impact on vertical circular cylinders. Pressure impulse is the time integral of the pressure during an impact of short time scale. The model is derived for a simplistic geometry and has relative impact height, crest length and cylinder radius as effective variables. The last parameter, the maximum angle of impact, is free and can be calibrated to yield the right force impulse. A progression of simpler pressure impulse models are derived in terms of a three-dimensional box generalization of the two-dimensional wall model and an axisymmetric model for vertical cylinders. The dependence on the model parameters is investigated in the simpler models and linked to the behaviour of the three-dimensional cylinder model. The model is next validated against numerical results for a wave impact for a phase- and direction-focused wave group. The maximum impact angle is determined by calibration against the force impulse. A good match of the pressure impulse fields is found. Further comparison to the force impulse of two common models in marine engineering reveals improved consistency for the present model. The model is found to provide a promising representation of the pressure impulse field, based on a limited number of input parameters. Its further validation and potential as a robust tool in force and response prediction is discussed.

Copyright

Corresponding author

Email address for correspondence: amgh@dtu.dk

References

Hide All
Chatjigeorgiou, I. K., Cooker, M. J. & Korobkin, A. A. 2016a Three-dimensional water impact at normal incidence to a blunt structure. Proc. R. Soc. Lond. A 472, 20150849.10.1098/rspa.2015.0849
Chatjigeorgiou, I. K., Korobkin, A. A. & Cooker, M. J. 2017 Three-dimensional steep wave impact on a vertical plate with an open rectangular section. Intl J. Mech. Sci. 133 (4), 260272.10.1016/j.ijmecsci.2017.08.045
Chatjigeorgiou, I. K., Korobkin, A. A., Cooker, M. J. & Ave, P. 2016b Three-dimensional steep wave impact onto a vertical plate of finite width. In Proceedings of the 31st IWWWFB 3–6 April, 2016, Plymouth, Michigan, USA.
Cointe, R. & Armand, J.-L. 1987 Hydrodynamic impact analysis of a cylinder. Trans ASME J. Offshore Mech. Arctic Engng 109 (3), 237243.10.1115/1.3257015
Cooker, M. J. 2013 A theory for the impact of a wave breaking onto a permeable barrier with jet generation. J. Engng Maths 79 (1), 112.10.1007/s10665-012-9558-9
Cooker, M. J. & Peregrine, H. 1995 Pressure-impulse theory for liquid impact problems. J. Fluid Mech. 297, 193214.10.1017/S0022112095003053
Dias, F. & Ghidaglia, J. 2018 Slamming: recent progress in the evaluation of impact pressures. Annu. Rev. Fluid Mech. 50 (2017), 243273.10.1146/annurev-fluid-010816-060121
Faltinsen, O. M., Landrini, M. & Greco, M. 2004 Slamming in marine applications. J. Engng Maths 48, 187217.10.1023/B:engi.0000018188.68304.ae
Ghadirian, A., Bredmose, H. & Dixen, M. 2016 Breaking phase focused wave group loads on offshore wind turbine monopiles. J. Phys.: Conf. Ser. 753 (9), 092004.
Goda, Y., Haranaka, S. & Kitahata, M.1966 Study on impulsive breaking wave forces on piles. Tech. Rep.
Hallowell, S., Myers, A. T. & Arwade, S. R. 2016 Variability of breaking wave characteristics and impact loads on offshore wind turbines supported bymonopiles. Wind Energy 19, 301312.10.1002/we.1833
Iafrati, A. & Korobkin, A. 2006 Breaking wave impact onto vertical wall. In Proceedings of the 4th International Conference on Hydroelas. Mar. Tech., Wuxi, China, 10–14 September, pp. 139148.
von Karman, T.1929 The impact on seaplane floats during landing. Tech. Rep., National Advisory Committee for Aeronautics.
Korobkin, A. 2004 Analytical models of water impact. Eur. J. Appl. Maths 15 (6), 821838.10.1017/S0956792504005765
Korobkin, A. 2008 Non-classical boundary conditions in water-impact problems. In IUTAM Symposium on Fluid–Structure Interaction in Ocean Engineering, pp. 167178. Springer.10.1007/978-1-4020-8630-4_15
Korobkin, A. A. & Malenica, S. 2005 Modified Logvinovich model for hydrodynamic loads on asymmetric contours entering water. In International Workshop on Water Waves and Floating Bodies 2005.
Korobkin, A. A. & Malenica, S. 2007 Steep wave impact onto elastic wall. In International Workshop on Water Waves and Floating Bodies, pp. 25.
Korobkin, A. A. & Scolan, Y. M. 2006 Three-dimensional theory of water impact. Part 2. Linearized Wagner problem. J. Fluid Mech. 549, 343373.10.1017/S0022112005008049
Logvinovich, G. V. & Yakimov, Y. L. 1973 Submergence of bodies in liquid with large velocities. In Proceedings of the IUTAM Symp. on Non-Steady Flow of Water at High Speeds (ed. Sedov, L. I. & Stepanov, G. Yu.), pp. 8592.
Morison, J. R. 1953 The force distribution exerted by surface waves on piles. Tech. Rep.
Peregrine, D. H. 2003 Water-wave impact on walls. Annu. Rev. Fluid Mech. 35 (1), 2343.10.1146/annurev.fluid.35.101101.161153
Rainey, R. C. 1989 A new equation for calculating wave loads on offshore structures. J. Fluid Mech. 204, 295324.10.1017/S002211208900176X
Rainey, R. C. T. 1995 Slender-body expressions for the wave load on offshore structures. Proc. R. Soc. Lond. A 450 (1939), 391416.10.1098/rspa.1995.0091
Rainey, R. C. T. 2007 Weak or strong nonlinearity: the vital issue. J. Engng Maths 58 (1–4), 229249.10.1007/s10665-006-9126-2
Scolan, Y. M. & Korobkin, A. A. 2001 Three-dimensional theory of water impact. Part 1. Inverse Wagner problem. J. Fluid Mech. 440, 293326.10.1017/S002211200100475X
Wagner, H. 1932 Über Stoß und Gleitvorgänge an der Oberfläche von Flüssigkeiten. Z. Angew. Math. Mech. 12 (4), 193215.10.1002/zamm.19320120402
Wienke, J. & Oumeraci, H. 2005 Breaking wave impact force on a vertical and inclined slender pile – Theoretical and large-scale model investigations. Coast. Engng 52 (5), 435462.10.1016/j.coastaleng.2004.12.008
Wood, D. J. & Peregrine, D. H. 1998 Two and three-dimensional pressure-impulse models of wave impact on structures. Coast. Engng 1–3, 15021515.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed