Skip to main content Accessibility help
×
Home

Predictions of the effective slip length and drag reduction with a lubricated micro-groove surface in a turbulent channel flow

  • Jaehee Chang (a1), Taeyong Jung (a1), Haecheon Choi (a1) (a2) and John Kim (a3)

Abstract

We perform direct numerical simulations of a turbulent channel flow with a lubricated micro-grooved surface to investigate the effects of this surface on the slip characteristics at the interface and the friction drag. The interface between water and lubricant is assumed to be flat, i.e. the surface-tension effect is neglected. The solid substrate, where a lubricant is infused, is composed of straight longitudinal grooves. The flow rate of water inside the channel is maintained constant, and a lubricant layer under the interface is shear driven by the turbulent water flow above. A turbulent channel flow with a superhydrophobic (i.e. air-lubricated) surface having the same solid substrate configuration is also simulated for comparison. The results show that the drag reduction with the liquid-infused surface highly depends on the lubricant viscosity as well as the groove width and aspect ratio. The amounts of drag reduction with the liquid-infused surfaces are not as good as those with superhydrophobic surfaces, but are still meaningfully large. For instance, the maximum drag reduction by the heptane-infused surface is approximately 13 % for a rectangular groove whose spanwise width and depth in wall units are 12 and 14.4, respectively, whereas a superhydrophobic surface with the same geometry results in a drag reduction of 21 %. The mean slip length normalized by the viscosity ratio and groove depth depends on the groove aspect ratio. The ratio of fluctuating spanwise slip length to the streamwise one is between 0.25 (ideal surface without groove structures) and 1 (i.e. isotropic slip), indicating that the slip is anisotropic. Using the Stokes flow assumption, the effective streamwise and spanwise slip lengths are expressed as a function of groove geometric parameters and lubricant viscosity. We also suggest a predictive model for drag reduction with the heptane-lubricated surface by combining the predicted effective slip lengths with the drag reduction formula used for riblets (Luchini et al., J. Fluid Mech., vol. 228, 1991, pp. 87–109). The predicted drag reductions are in good agreements with those from the present and previous direct numerical simulations.

Copyright

Corresponding author

Email address for correspondence: choi@snu.ac.kr

Footnotes

Hide All

Present address: LG Electronics, 51, Gasan digital 1-ro, Geumcheon-gu, Seoul, Korea

Footnotes

References

Hide All
Aljallis, E., Sarshar, M. A., Datla, R., Sikka, V., Jones, A. & Choi, C.-H. 2013 Experimental study of skin friction drag reduction on superhydrophobic flat plates in high Reynolds number boundary layer flow. Phys. Fluids 25, 025103.
Bechert, D. W., Brus, M., Hage, W., Van der Hoeven, J. G. T. & Hoppe, G. 1997 Experiment on drag-reduction surfaces and their optimization with an adjustable geometry. J. Fluid Mech. 338, 5987.
Belyaev, A. V. & Vinogradova, O. I. 2010 Effective slip in pressure-driven flow past super-hydrophobic stripes. J. Fluid Mech. 652, 489499.
Bidkar, R. A., Leblac, L., Kulkarni, A. J., Bahadur, V., Ceccio, S. L. & Perlin, M. 2014 Skin-friction drag reduction in the turbulent regime using random-textured hydrophobic surfaces. Phys. Fluids 26, 085108.
Busse, A. & Sandham, N. D. 2012 Influence of an anisotropic slip-length boundary condition on turbulent channel flow. Phys. Fluids 24, 055111.
Busse, A., Sandham, N. D., Mchale, G. & Newton, M. I. 2013 Change in drag, apparent slip and optimum air layer thickness for laminar flow over an idealised superhydrophobic surface. J. Fluid Mech. 727, 488508.
Cartagena, E. J. G., Arenas, I., Bernardini, M. & Leonardi, S. 2018 Dependence of the drag over super hydrophobic and liquid infused surfaces on the textured surface and Weber number. Flow Turbul. Combust. 100, 945960.
Cheng, Y. P., Teo, C. J. & Khoo, B. C. 2009 Microchannel flows with superhydrophobic surfaces: effects of Reynolds number and pattern width to channel height ratio. Phys. Fluids 21 (12), 122004.
Choi, H., Moin, P. & Kim, J. 1993 Direct numerical simulation of turbulent flow over riblets. J. Fluid Mech. 255, 503.
Cottin-Bizonne, C., Barentin, C., Charlaix, É., Bocquet, L. & Barrat, J. L. 2004 Dynamics of simple liquids at heterogeneous surfaces: molecular-dynamics simulations and hydrodynamic description. Eur. Phys. J. E 15 (4), 427438.
Daniello, R. J., Waterhouse, N. E. & Rothstein, J. P. 2009 Drag reduction in turbulent flows over superhydrophobic surfaces. Phys. Fluids 21, 085103.
Fairhall, C. T. & García-Mayoral, R. 2018 Spectral analysis of the slip-length model for turbulence over textured superhydrophobic surfaces. Flow Turbul. Combust. 100, 961978.
Fu, M. K., Arenas, I., Leonardi, S. & Hultmark, M. 2017 Liquid-infused surfaces as a passive method of turbulent drag reduction. J. Fluid Mech. 824, 688700.
Fukagata, K., Iwamoto, K. & Kasagi, N. 2002 Contribution of Reynolds stress distribution to the skin-friction in wall-bounded flows. Phys. Fluids 14, L73L76.
Fukagata, K., Kasagi, N. & Koumoutsakos, P. 2006 A theoretical prediction of friction drag reduction in turbulent flow by superhydrophobic surfaces. Phys. Fluids 18, 051703.
García-Mayoral, R. & Jiménez, J. 2011 Drag reduction by riblets. Phil. Trans. R. Soc. Lond. A 369, 14121427.
Ge, Z., Holmgren, H., Kronbichler, M., Brandt, L. & Kreiss, G. 2018 Effective slip over partially filled microcavities and its possible failure. Phys. Rev. Fluids 3, 054201.
Golovin, K. B., Gose, J. W., Perlin, M., Ceccio, S. L. & Tuteja, A. 2016 Bioinspired surfaces for turbulent drag reduction. Phil. Trans. R. Soc. Lond. A 374 (2073), 20160189.
Greidanus, A. J., Delfos, R. & Westerweel, J. 2011 Drag reduction by surface treatment in turbulent Taylor–Couette flow. J. Phys.: Conf. Ser. 318 (8), 082016.
Henoch, C., Krupenkin, T., Kolodner, P., Taylor, J., Hodes, M., Lyons, A., Peguero, C. & Breuer, K. 2006 Turbulent drag reduction using superhydrophobic surfaces. In Proceedings of the 3rd AIAA Flow Control Conference, vol. 2, pp. 840844. AIAA.
Jelly, T. O., Jung, S. Y. & Zaki, T. A. 2014 Turbulence and skin friction modification in channel flow with streamwise-aligned superhydrophobic surface texture. Phys. Fluids 26, 095102.
Jiménez, J. 1994 On the structure and control of near wall turbulence. Phys. Fluids 6, 944.
Jiménez, J. & Moin, P. 1991 The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225, 213240.
Jung, T., Choi, H. & Kim, J. 2016 Effects of the air layer of an idealized superhydrophobic surface on the slip length and skin-friction drag. J. Fluid Mech. 790, R1.
Jung, Y. C. & Bhushan, B. 2010 Biomimetic structures for fluid drag reduction in laminar and turbulent flows. J. Phys.: Condens. Matter 22, 035104.
Kim, J., Kim, D. & Choi, H. 2001 An immersed-boundary finite-volume method for simulations of flow in complex geometries. J. Comput. Phys. 171, 132150.
Lauga, E. & Stone, H. 2003 Effective slip in pressure-driven Stokes flow. J. Fluid Mech. 489, 5577.
Lee, J., Jelly, T. O. & Zaki, T. A. 2015 Effect of Reynolds number on turbulent drag reduction by superhydrophobic surface textures. Flow Turbul. Combust. 95, 277300.
Li, Y., Alame, K. & Mahesh, K. 2017 Feature-resolved computational and analytical study of laminar drag reduction by superhydrophobic surfaces. Phys. Rev. Fluids 2 (5), 054002.
Ling, H., Srinivasan, S., Golovin, K., Mckinley, G. H., Tuteja, A. & Katz, J. 2016 High-resolution velocity measurement in the inner part of turbulent boundary layers over super-hydrophobic surfaces. J. Fluid Mech. 801, 670703.
Liu, Y., Wexler, J. S., Schönecker, C. & Stone, H. A. 2016 Effect of viscosity ratio on the shear-driven failure of liquid-infused surfaces. Phys. Rev. Fluids 1 (7), 074003.
Luchini, P., Manzo, F. & Pozzi, A. 1991 Resistance of a grooved surface to parallel flow and cross-flow. J. Fluid. Mech. 228, 87109.
MacDonald, M., Chung, D., Hutchins, N., Chan, L., Ooi, A. & García-Mayoral, R. 2017 The minimal-span channel for rough-wall turbulent flows. J. Fluid Mech. 816, 542.
Martell, M. B., Perot, J. B. & Rothstein, J. P. 2009 Direct numerical simulations of turbulent flows over superhydrophobic surfaces. J. Fluid Mech. 620, 3141.
Martell, M. B., Rothstein, J. P. & Perot, J. B. 2010 An analysis of superhydrophobic turbulent drag reduction mechanisms using direct numerical simulation. Phys. Fluids 22, 065102.
Maynes, D., Jeffs, K., Woolford, B. & Webb, B. W. 2007 Laminar flow in a microchannel with hydrophobic surface patterned microribs oriented parallel to the flow direction. Phys. Fluids 19, 093603.
Min, T. & Kim, J. 2004 Effects of hydrophobic surface on skin-friction drag. Phys. Fluids 16, L55.
Nizkaya, T. V., Asmolov, E. S. & Vinogradova, O. I. 2014 Gas cushion model and hydrodynamic boundary condition for superhydrophobic textures. Phys. Rev. E 90, 043017.
Park, H., Park, H. & Kim, J. 2013 A numerical study of the effects of superhydrophobic surface on skin-friction drag in turbulent channel flow. Phys. Fluids 25, 110815.
Park, H., Sun, G. & Kim, C.-J. C. 2014 Superhydrophobic turbulent drag reduction as a function of surface grating parameters. J. Fluid Mech. 747, 722734.
Peguero, C. & Breuer, K. 2009 On drag reduction in turbulent channel flow over superhydrophobic surfaces. In Advance in Turbulence XII (ed. Eckhardt, B.), pp. 233236. Springer.
Rastegari, A. & Akhavan, R. 2015 On the mechanism of turbulent drag reduction with superhydrophobic surfaces. J. Fluid Mech. 773, R4.
Rastegari, A. & Akhavan, R. 2018 The common mechanism of turbulent skin-friction drag reduction with superhydrophobic longitudinal microgrooves and riblets. J. Fluid Mech. 838, 68104.
Rosenberg, B. J., Van Buren, T., Fu, M. K. & Smits, A. J. 2016 Turbulent drag reduction over air- and liquid- impregnated surfaces. Phys. Fluids 28, 015103.
Rothstein, J. P. 2010 Slip on superhydrophobic surfaces. Annu. Rev. Fluid Mech. 42, 89109.
Sangani, A. S. & Acrivos, A. 1982 Slow flow through a periodic array of spheres. Intl J. Multiphase Flow 14 (4), 343360.
Schönecker, C., Baier, T. & Hardt, S. 2014 Influence of the enclosed fluid on the flow over a microstructured surface in the Cassie state. J. Fluid Mech. 740, 168195.
Schönecker, C. & Hardt, S. 2013 Longitudinal and transverse flow over a cavity containing a second immiscible fluid. J. Fluid Mech. 717, 376394.
Schönecker, C. & Hardt, S. 2015 Assessment of drag reduction at slippery, topographically structured surfaces. Microfluid Nanofluid 19, 199207.
Seo, J., García-Mayoral, R. & Mani, A. 2015 Pressure fluctuations and interfacial robustness in turbulent flows over superhydrophobic surfaces. J. Fluid Mech. 783, 448473.
Seo, J., García-Mayoral, R. & Mani, A. 2018 Turbulent flows over superhydrophobic surfaces: flow-induced capillary waves, and robustness of air-water interfaces. J. Fluid Mech. 835, 4585.
Seo, J. & Mani, A. 2016 On the scaling of the slip velocity in turbulent flows over superhydrophobic surfaces. Phys. Fluids 28, 025110.
Solomon, B. R., Khalil, K. S. & Varanasi, K. K. 2014 Drag reduction using lubricant-impregnated surfaces in viscous laminar flow. Langmuir 30 (36), 1097010976.
Sun, R. & Ng, C. O. 2017 Effective slip for flow through a channel bounded by lubricant-impregnated grooved surfaces. Theor. Comput. Fluid Dyn. 31 (2), 189209.
Teo, C. J. & Khoo, B. C. 2009 Analysis of Stokes flow in microchannels with superhydrophobic surfaces containing a periodic array of micro-grooves. Microfluid. Nanofluid. 7, 353382.
Türk, S., Daschiel, G., Stroh, A., Hasegawa, Y. & Frohnapfel, B. 2014 Turbulent flow over superhydrophobic surfaces with streamwise grooves. J. Fluid Mech. 747, 186217.
Van Buren, T. & Smits, A. J. 2017 Substantial drag reduction in turbulent flow using liquid-infused surfaces. J. Fluid Mech. 827, 448456.
Vinogradova, O. I. 1995 Drainage of a thin liquid film confined between hydrophobic surfaces. Langmuir 11, 22132220.
Walsh, M. J. 1983 Riblets as a viscous drag reduction technique. AIAA J. 21, 485486.
Wexler, J. S., Jacobi, I. & Stone, H. A. 2015 Shear-driven failure of liquid-infused surfaces. Phys. Rev. Lett. 114 (16), 168301.
Wong, T. S., Kang, S. H., Tang, S. K., Smythe, E. J., Hatton, B. D., Grinthal, A. & Aizenberg, J. 2011 Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477, 443447.
Woolford, B., Prince, J., Maynes, D. & Webb, B. W. 2009 Particle image velocimetry characterization of turbulent channel flow with rib patterned superhydrophobic walls. Phys. Fluids 21, 085106.
Ybert, C., Barentin, C., Cottin-Bizonne, C. C., Joseph, P. & Bocquet, L. R. 2007 Achieving large slip with superhydrophobic surfaces: Scaling laws for generic geometries. Phys. Fluids 19, 123601.
You, J., Choi, H. & Yoo, J. 2000 A modified fractional step method of keeping a constant mass flow rate in fully developed channel and pipe flows. KSME Intl J. 14 (5), 547552.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Related content

Powered by UNSILO

Predictions of the effective slip length and drag reduction with a lubricated micro-groove surface in a turbulent channel flow

  • Jaehee Chang (a1), Taeyong Jung (a1), Haecheon Choi (a1) (a2) and John Kim (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.