Skip to main content Accessibility help

Precessional instability of a fluid cylinder



In this paper, the instability of a fluid inside a precessing cylinder is addressed theoretically and experimentally. The precessional motion forces Kelvin modes in the cylinder, which can become resonant for given precessional frequencies and cylinder aspect ratios. When the Reynolds number is large enough, these forced resonant Kelvin modes eventually become unstable. A linear stability analysis based on a triadic resonance between a forced Kelvin mode and two additional free Kelvin modes is carried out. This analysis allows us to predict the spatial structure of the instability and its threshold. These predictions are compared to the vorticity field measured by particle image velocimetry with an excellent agreement. When the Reynolds number is further increased, nonlinear effects appear. A weakly nonlinear theory is developed semi-empirically by introducing a geostrophic mode, which is triggered by the nonlinear interaction of a free Kelvin mode with itself in the presence of viscosity. Amplitude equations are obtained coupling the forced Kelvin mode, the two free Kelvin modes and the geostrophic mode. They show that the instability saturates to a fixed point just above threshold. Increasing the Reynolds number leads to a transition from a steady saturated regime to an intermittent flow in good agreement with experiments. Surprisingly, this weakly nonlinear model still gives a correct estimate of the mean flow inside the cylinder even far from the threshold when the flow is turbulent.


Corresponding author

Email address for correspondence:


Hide All
Agrawal, B. N. 1993 Dynamics characteristics of liquid motion in partially filled tanks of a spinning spacecraft. J. Guid. Control Dyn. 16 (4), 636640.
Bao, G. W. & Pascal, M. 1997 Stability of a spinning liquid filled spacecraft. Appl. Mech. 67, 407421.
Bayly, B. J. 1986 Three-dimensional instability of elliptical flow. Phys. Rev. Lett. 57, 21602163.
Busse, F. 1968 Steady fluid flow in a precessing spheroidal shell. J. Fluid Mech. 33, 739752.
Eloy, C., Le Gal, P. & Le Dizès, S. 2000 Experimental study of the multipolar vortex instability. Phys. Rev. Lett. 85, 34003403.
Eloy, C., Le Gal, P. & Le Dizès, S. 2003 Elliptic and triangular instabilities in rotating cylinders. J. Fluid Mech. 476, 357388.
Fukumoto, Y. 2003 The three dimensional instability of a strained vortex tube revisited. J. Fluid Mech. 493, 287318.
Gans, R. F. 1970 a On hydromagnetic precession in a cylinder. J. Fluid Mech. 45, 111.
Gans, R. F. 1970 b On the precession of a resonant cylinder. J. Fluid Mech. 476, 865872.
Gans, R. F. 1984 Dynamics of a near-resonant fluid-filled gyroscope. AIAA J. 22, 14651471.
Garg, S. C., Furunoto, N. & Vanyo, J. P. 1986 Spacecraft nutational instability prediction by energy dissipation measurments. J. Guid. 9 (3), 357361.
Greenspan, H. P. 1968 The Theory of Rotating Fluids. Cambridge University Press.
Hollerbach, R. & Kerswell, R. 1995 Oscillatory internal shear layers in rotating and precessing flows. J. Fluid Mech. 298, 327.
Kelvin, L. 1880 Vibrations of a columnar vortex. Phil. Mag. 10, 155168.
Kerswell, R. R. 1993 The instability of precessing flow. Geophys. Astrophys. Fluid Dyn. 72, 107144.
Kerswell, R. R. 1995 On the internal shear layers spawned by the critical regions in oscillatory Ekman boudary layers. J. Fluid Mech. 298, 311325.
Kerswell, R. R. 1996 Upper bounds on the energy dissipation in turbulent precession. J. Fluid Mech. 321, 335370.
Kerswell, R. R. 1999 Secondary instabilities in rapidly rotating fluids: inertial wave breakdown. J. Fluid Mech. 382, 283306.
Kerswell, R. R. 2002 Elliptical instability. Annu. Rev. Fluid Mech. 34, 83113.
Kerswell, R. R. & Barenghi, C. F. 1995 On the viscous decay rates of inertial waves in a rotating cylinder. J. Fluid Mech. 285, 203214.
Kobine, J. J. 1995 Inertial wave dynamics in a rotating and precessing cylinder. J. Fluid Mech. 303, 233252.
Kobine, J. J. 1996 Azimuthal flow associated with inertial wave resonance in a precessing cylinder. J. Fluid Mech. 319, 387406.
Kudlick, M. 1966 On the transient motions in a contained rotating fluid. PhD thesis, Massachussetts Institute of Technology, Cambridge, MA.
Lagrange, R., Eloy, C., Nadal, F. & Meunier, P. 2008 Instability of a fluid inside a precessing cylinder. Phys. Fluids 20 (8), 081701.
Lambelin, J. P., Nadal, F., Lagrange, R. & Sarthou, A. 2009 Non-resonant viscous theory for the stability of a fluid-filled gyroscope. J. Fluid Mech. 639, 167194.
Lorenzani, S. & Tilgner, A. 2001 Fluid instabilities in precessing spheroidal cavities. J. Fluid Mech. 447, 111128.
Mahalov, A. 1993 The instability of rotating fluid columns subjected to a weak external coriolis-force. Phys. Fluids A 5 (4), 891900.
Malkus, W. V. R. 1968 Precession of the earth as the cause of geomagnetism. Science 160, 259264.
Malkus, W. V. R. 1989 An experimental study of global instabilities due to tidal (elliptical) distortion of a rotating elastic cylinder. Geophys. Astrophys. Fluid Dyn. 48, 123134.
Manasseh, R. 1992 Breakdown regimes of inertia waves in a precessing cylinder. J. Fluid Mech. 243, 261296.
Manasseh, R. 1996 Nonlinear behaviour of contained inertia waves. J. Fluid Mech. 315, 151173.
Mason, D. M. & Kerswell, R. R. 1999 Nonlinear evolution of the elliptical instability: an example of inertial breakdown. J. Fluid Mech. 396, 73108.
McEwan, A. D. 1970 Inertial oscillations in a rotating fluid cylinder. J. Fluid Mech. 40 (3), 603640.
Meunier, P., Eloy, C., Lagrange, R. & Nadal, F. 2008 A rotating fluid cylinder subject to weak precession. J. Fluid Mech. 599, 405440.
Meunier, P. & Leweke, T. 2003 Analysis and minimization of errors due to high gradients in particule image velocimetry. Exp. Fluids 35, 408421.
Moore, D. W. & Saffman, P. G. 1975 The instability of a straight vortex filament in a strain field. Proc. R. Soc. Lond. A 346, 413425.
Noir, J. 2000 Écoulement d'un fluide dans une cavité en précession: approches numérique et expérimentale. PhD thesis, Université Joseph Fourier, Grenoble 1.
Noir, J., Brito, D., Aldridge, K. & Cardin, P. 2001 a Experimental evidence of inertial waves in a precessing spheroidal cavity. Geophys. Res. Lett. 38, 37853788.
Noir, J., Cardin, P., Jault, D. & Masson, J. P. 2003 Experimental evidence of nonlinear resonance effects between retrograde precession and the tilt-over mode within a spheroid. Geophys. J. Intl 154, 407416.
Noir, J., Jault, D. & Cardin, P. 2001 b Numerical study of the motions within a slowly precessing sphere at low Ekman number. J. Fluid Mech. 437, 283299.
Poincaré, H. 1910 Sur la précession des corps déformables. Bull. Astro. 27, 257264.
Racz, J.-P. & Scott, J. F. 2007 Parametric instability in a rotating cylinder of gas subject to sinusoidal axial compression. Part 2. Weakly nonlinear theory. J. Fluid Mech. 595, 291321.
Saffman, P. G. 1992 Vortex Dynamics. Cambridge University Press.
Stewartson, K. 1958 On the stability of a spinning top containing liquid. J. Fluid Mech. 5, 577592.
Thompson, R. 1970 Diurnal tides and shear instabiliies in a rotating cylinder. J. Fluid Mech. 40, 737751.
Tilgner, A. 1999 a Magnetohydrodynamic flow in precessing spherical shells. J. Fluid Mech. 379, 303318.
Tilgner, A. 1999 b Non-axisymmetric shear layers in precessing fluid ellipsoidal shells. Geophys. J. Intl 136, 629636.
Tilgner, A. 2005 Precession driven dynamos. Phys. Fluids 17, 034104.
Tilgner, A. 2007 Kinematic dynamos with precession driven flow in a sphere. Geophys. Astrophys. Fluid Dyn. 101, 19.
Tsai, C.-Y. & Widnall, S. E. 1976 The stability of short waves on a straight vortex filament in a weak externally imposed strain field. J. Fluid Mech. 73 (4), 721733.
Vanyo, J. P., Wilde, P. & Cardin, P. 1995 Experiments on precessing flows in the earth's liquid core. Geophys. J. Intl 121, 136142.
Waleffe, F. 1989 The 3d instability of a strained vortex and its relation to turbulence. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA.
Waleffe, F. 1990 On the three-dimensional instability of strained vortices. Phys. Fluids A 2 (1), 7680.
Wu, C. & Roberts, P. 2008 A precessionally-driven dynamo in a plane layer. Geophys. Astrophys. Fluid Dyn. 102, 119.
Wu, C. & Roberts, P. 2009 On a dynamo driven by topographic precession. Geophys. Astrophys. Fluid Dyn. 103, 467501.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed