Skip to main content Accessibility help
×
Home

Pore-filling events in single junction micro-models with corresponding lattice Boltzmann simulations

  • Ioannis Zacharoudiou (a1), Emily M. Chapman (a1), Edo S. Boek (a1) (a2) and John P. Crawshaw (a1)

Abstract

The aim of this work is to better understand fluid displacement mechanisms at the pore scale in relation to capillary-filling rules. Using specifically designed micro-models we investigate the role of pore body shape on fluid displacement during drainage and imbibition via quasi-static and spontaneous experiments at ambient conditions. The experimental results are directly compared to lattice Boltzmann (LB) simulations. The critical pore-filling pressures for the quasi-static experiments agree well with those predicted by the Young–Laplace equation and follow the expected filling events. However, the spontaneous imbibition experimental results differ from those predicted by the Young–Laplace equation; instead of entering the narrowest available downstream throat the wetting phase enters an adjacent throat first. Thus, pore geometry plays a vital role as it becomes the main deciding factor in the displacement pathways. Current pore network models used to predict displacement at the field scale may need to be revised as they currently use the filling rules proposed by Lenormand et al. (J. Fluid Mech., vol. 135, 1983, pp. 337–353). Energy balance arguments are particularly insightful in understanding the aspects affecting capillary-filling rules. Moreover, simulation results on spontaneous imbibition, in excellent agreement with theoretical predictions, reveal that the capillary number itself is not sufficient to characterise the two phase flow. The Ohnesorge number, which gives the relative importance of viscous forces over inertial and capillary forces, is required to fully describe the fluid flow, along with the viscosity ratio.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Pore-filling events in single junction micro-models with corresponding lattice Boltzmann simulations
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Pore-filling events in single junction micro-models with corresponding lattice Boltzmann simulations
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Pore-filling events in single junction micro-models with corresponding lattice Boltzmann simulations
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Email address for correspondence: i.zacharoudiou@imperial.ac.uk

References

Hide All
Anderson, D. M., McFadden, G. B. & Wheeler, A. A. 1998 Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech. 30 (1), 139165.
Bico, J. & Quéré, D. 2003 Precursors of impregnation. Europhys. Lett. 61 (3), 348353.
Blunt, M. J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Paluszny, A. & Pentland, C. 2013 Pore-scale imaging and modelling. Adv. Water Resour. 51, 197216; 35th Year Anniversary Issue.
Blunt, M. J., Jackson, M. D., Piri, M. & Valvatne, P. H. 2002 Detailed physics, predictive capabilities and macroscopic consequences for pore-network models of multiphase flow. Adv. Water Resour. 25 (812), 10691089.
Blunt, M. J. & Scher, H. 1995 Pore-level modeling of wetting. Phys. Rev. E 52 (6), 6387.
Briant, A. J. & Yeomans, J. M. 2004 Lattice Boltzmann simulations of contact line motion. II. Binary fluids. Phys. Rev. E 69 (3), 031603.
Brody, J. P., Yager, P., Goldstein, R. E. & Austin, R. H. 1996 Biotechnology at low Reynolds numbers. Biophys. J. 71 (6), 34303441.
Cahn, J. 1977 Critical-point wetting. J. Chem. Phys. 66, 3367.
Chalbaud, C., Robin, M., Lombard, J.-M., Martin, F., Egermann, P. & Bertin, H. 2009 Interfacial tension measurements and wettability evaluation for geological CO2 storage. Adv. Water Resour. 32 (1), 98109.
Chalbaud, C. A., Lombard, J.-M. N., Martin, F., Robin, M., Bertin, H. J. & Egermann, P. 2007 Two phase flow properties of Brine-CO2 systems in a carbonate core: influence of wettability on Pc and kr. In SPE/EAGE Reservoir Characterization and Simulation Conference. Society of Petroleum Engineers.
Chang, L.-C., Tsai, J.-P., Shan, H.-Y. & Chen, H.-H. 2009 Experimental study on imbibition displacement mechanisms of two-phase fluid using micro model. Environ. Earth Sci. 59 (4), 901911.
Chatenever, A. & Calhoun, J. C. Jr. 1952 Visual examinations of fluid behavior in porous media-part I. J. Petrol. Tech. 4 (06), 149156.
Chiquet, P., Broseta, D. & Thibeau, S. 2007 Wettability alteration of caprock minerals by carbon dioxide. Geofluids 7 (2), 112122.
Constantinides, G. N. & Payatakes, A. C. 2000 Effects of precursor wetting films in immiscible displacement through porous media. Trans. Porous Med. 38 (3), 291317.
Cox, R. G. 1986 The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow. J. Fluid Mech. 168, 169194.
D’Humières, D., Ginzburg, I., Krafczyk, M., Lallemand, P. & Luo, L.-S. 2002 Multiple-relaxation-time lattice Boltzmann models in three dimensions. Phil. Trans. R. Soc. Lond. A 360, 437.
Dimitrov, D. I., Milchev, A. & Binder, K. 2007 Capillary rise in nanopores: molecular dynamics evidence for the Lucas–Washburn equation. Phys. Rev. Lett. 99, 054501.
Diotallevi, F., Biferale, L., Chibbaro, S., Pontrelli, G., Toschi, F. & Succi, S. 2009 Lattice boltzmann simulations of capillary filling: finite vapour density effects. Eur. Phys. J. Special Topics 171 (1), 237243.
Doughty, C., Freifeld, B. M. & Trautz, R. C. 2008 Site characterization for CO2 geologic storage and vice versa: the Frio brine pilot, Texas, USA as a case study. Environ. Geol. 54 (8), 16351656.
Dreyer, M., Delgado, A. & Path, H.-J. 1994 Capillary rise of liquid between parallel plates under microgravity. J. Colloid Interface Sci. 163 (1), 158168.
Dymond, J. H. & Øye, H. A. 1994 Viscosity of selected liquid n-alkanes. J. Phys. Chem. Ref. Data 23, 4153.
Ferrari, A. & Lunati, I. 2013 Direct numerical simulations of interface dynamics to link capillary pressure and total surface energy. Adv. Water Resour. 57, 1931.
Giordano, N. & Cheng, J. T. 2001 Microfluid mechanics: progress and opportunities. J. Phys.: Condens. Matter 13 (15), R271.
Gray, F., Cen, J. & Boek, E. S. 2016 Simulation of dissolution in porous media in three dimensions with lattice Boltzmann, finite-volume, and surface-rescaling methods. Phys. Rev. E 94, 043320.
Hecht, M. & Harting, J. 2010 Implementation of on-site velocity boundary conditions for D3Q19 lattice Boltzmann simulations. J. Stat. Mech. 2010 (01), P01018.
Hesse, M. A., Orr, F. M. & Tchelepi, H. A. 2008 Gravity currents with residual trapping. J. Fluid Mech. 611, 3560.
Hornbrook, J. W., Castanier, L. M. & Pettit, P. A. 1991 Observation of foam/oil interactions in a new high-resolution micromodel. In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers.
Ichikawa, N., Hosokawa, K. & Maeda, R. 2004 Interface motion of capillary-driven flow in rectangular microchannel. J. Colloid Interface Sci. 280 (1), 155164.
Ichikawa, N. & Satoda, Y. 1994 Interface dynamics of capillary flow in a tube under negligible gravity condition. J. Colloid Interface Sci. 162 (2), 350355.
Karadimitriou, N. K. & Hassanizadeh, S. M. 2012 A review of micromodels and their use in two-phase flow studies. Vadose Zone Journal 11 (3).
Kavehpour, H. P., Ovryn, B. & McKinley, G. H. 2003 Microscopic and macroscopic structure of the precursor layer in spreading viscous drops. Phys. Rev. Lett. 91 (19), 196104.
Kendon, V. M., Cates, M. E., Pagonabarraga, I., Desplat, J.-C. & Bladon, P. 2001 Inertial effects in three-dimensional spinodal decomposition of a symmetric binary fluid mixture: a lattice boltzmann study. J. Fluid Mech. 440, 147203.
Kuhn, H., Försterling, H.-D. & Waldeck, D. H. 2009 Principles of Physical Chemistry. Wiley.
Kumar Gunda, N. S., Bera, B., Karadimitriou, N. K., Mitra, S. K. & Hassanizadeh, S. M. 2011 Reservoir-on-a-chip (roc): a new paradigm in reservoir engineering. Lab on a Chip 11 (22), 37853792.
Kusumaatmaja, H., Pooley, C. M., Girardo, S., Pisignano, D. & Yeomans, J. M. 2008 Capillary filling in patterned channels. Phys. Rev. E 77, 067301.
Lallemand, P. & Luo, L.-S. 2000 Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys. Rev. E 61, 65466562.
Lenormand, R. 1990 Liquids in porous media. J. Phys.: Condens. Matter 2 (S), SA79.
Lenormand, R., Zarcone, C. & Sarr, A. 1983 Mechanisms of the displacement of one fluid by another in a network of capillary ducts. J. Fluid Mech. 135, 337353.
Levine, S., Lowndes, J., Watson, E. J. & Neale, G. 1980 A theory of capillary rise of a liquid in a vertical cylindrical tube and in a parallel-plate channel: Washburn equation modified to account for the meniscus with slippage at the contact line. J. Colloid Interface Sci. 73 (1), 136151.
Lucas, R. 1918 Rate of capillary ascension of liquids. Kolloidn. Z 23 (15), 1522.
Lyons, W. 2009 Working Guide to Reservoir Engineering. Gulf Professional Publishing.
Mognetti, B. M. & Yeomans, J. M. 2009 Capillary filling in microchannels patterned by posts. Phys. Rev. E 80, 056309.
Morrow, N. R. & Mason, G. 2001 Recovery of oil by spontaneous imbibition. Curr. Opin. Colloid Interface Sci. 6 (4), 321337.
Øren, P.-E. & Bakke, S. 2003 Reconstruction of berea sandstone and pore-scale modelling of wettability effects. J. Petrol. Science Engineering 39 (3), 177199.
Øren, P.-E., Bakke, S. & Arntzen, O. J. 1998 Extending predictive capabilities to network models. SPE J. RICHARDSON 3, 324336.
Petrash, D. A., Nelson, T. M. & Otto, E. W. 1963 Effect of Surface Energy on the Liquid–Vapor Interface Configuration During Weightlessness. National Aeronautics and Space Administration.
Pooley, C. M., Kusumaatmaja, H. & Yeomans, J. M. 2008 Contact line dynamics in binary lattice Boltzmann simulations. Phys. Rev. E 78, 056709.
Pooley, C. M., Kusumaatmaja, H. & Yeomans, J. M. 2009 Modelling capillary filling dynamics using lattice Boltzmann simulations. Eur. Phys. J. Special Topics 171 (1), 6371.
Quéré, D. 1997 Inertial capillarity. Europhys. Lett. 39 (5), 533.
Raiskinmäki, P., Shakib-Manesh, A., Jäsberg, A., Koponen, A., Merikoski, J. & Timonen, J. 2002 Lattice-Boltzmann simulation of capillary rise dynamics. J. Stat. Phys. 107 (1–2), 143158.
Rangel-German, E. R. & Kovscek, A. R. 2006 A micromodel investigation of two-phase matrix-fracture transfer mechanisms. Water Resour. Res. 42, W03401.
Rowlinson, J. S. & Widom, B. 1982 Molecular Theory of Capillarity. Clarendon.
Rücker, M., Berg, S., Armstrong, R. T., Georgiadis, A., Ott, H., Schwing, A., Neiteler, R., Brussee, N., Makurat, A., Leu, L. et al. 2015 From connected pathway flow to ganglion dynamics. Geophys. Res. Lett. 42 (10), 38883894.
Saadatpoor, E., Bryant, S. L. & Sepehrnoori, K. 2011 Effect of upscaling heterogeneous domain on CO2 trapping mechanisms. Energy Procedia 4 (0), 50665073; 10th International Conference on Greenhouse Gas Control Technologies.
Semprebon, C., Krüger, T. & Kusumaatmaja, H. 2016 Ternary free-energy lattice Boltzmann model with tunable surface tensions and contact angles. Phys. Rev. E 93, 033305.
Sheng, P. & Zhou, M. 1992 Immiscible-fluid displacement: contact-line dynamics and the velocity-dependent capillary pressure. Phys. Rev. A 45 (8), 5694.
Siegel, R. 1961 Transient capillary rise in reduced and zero-gravity fields. Trans. ASME J. Appl. Mech. 28 (2), 165170.
Sorbie, K. S. & Skauge, A. 2012 Can network modeling predict two-phase flow functions. Petrophysics 53 (06), 401409.
Stange, M., Dreyer, M. E. & Rath, H. J. 2003 Capillary driven flow in circular cylindrical tubes. Phys. Fluids 15 (9), 25872601.
Stukan, M. R., Ligneul, P., Crawshaw, J. P. & Boek, E. S. 2010 Spontaneous imbibition in nanopores of different roughness and wettability. Langmuir 26 (16), 1334213352.
Taku, I. S., Jessen, K. & Orr, F. M. Jr. 2007 Storage of CO2 in saline aquifers: effects of gravity, viscous, and capillary forces on amount and timing of trapping. Intl J. Greenh. Gas Control 1 (4), 481491.
Tokunaga, T. K., Wan, J., Jung, J.-W., Kim, T. W., Kim, Y. & Dong, W. 2013 Capillary pressure and saturation relations for supercritical CO2 and brine in sand: high-pressure Pc(Sw) controller/meter measurements and capillary scaling predictions. Water Resour. Res. 49 (8), 45664579.
Valvatne, P. H. & Blunt, M. J. 2003 Predictive pore-scale network modeling. In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers.
Valvatne, P. H. & Blunt, M. J. 2004 Predictive pore-scale modeling of two-phase flow in mixed wet media. Water Resour. Res. 40 (7), w07406.
Vizika, O., Avraam, D. G. & Payatakes, A. C. 1994 On the role of the viscosity ratio during low-Capillary-number forced imbibition in porous media. J. Colloid Interface Sci. 165 (2), 386401.
Washburn, E. W. 1921 The dynamics of capillary flow. Phys. Rev. 17 (3), 273.
Yeomans, J. M. 2006 Mesoscale simulations: lattice Boltzmann and particle algorithms. Physica A 369 (1), 159184.
Yu, L. & Wardlaw, N. C. 1986 Mechanisms of nonwetting phase trapping during imbibition at slow rates. J. Colloid Interface Sci. 109 (2), 473486.
Zacharoudiou, I. & Boek, E. S. 2016 Capillary filling and Haines jump dynamics using free energy Lattice Boltzmann simulations. Adv. Water Resour. 92, 4356.
Zhmud, B. V., Tiberg, F. & Hallstensson, K. 2000 Dynamics of capillary rise. J. Colloid Interface Sci. 228 (2), 263269.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed