Skip to main content Accessibility help

Phase diagram for droplet impact on superheated surfaces

  • Hendrik J. J. Staat (a1), Tuan Tran (a2), Bart Geerdink (a1), Guillaume Riboux (a3), Chao Sun (a1) (a4), José Manuel Gordillo (a3) and Detlef Lohse (a1) (a5)...


We experimentally determine the phase diagram for impacting ethanol droplets on a smooth, sapphire surface in the parameter space of Weber number $\mathit{We}$ versus surface temperature $T$ . We observe two transitions, namely the one towards splashing (disintegration of the droplet) with increasing $\mathit{We}$ , and the one towards the Leidenfrost state (no contact between the droplet and the plate due to a lasting vapour film) with increasing $T$ . Consequently, there are four regimes: contact and no splashing (deposition regime), contact and splashing (contact–splash regime), neither contact nor splashing (bounce regime), and finally no contact, but splashing (film–splash regime). While the transition temperature $T_{L}$ to the Leidenfrost state depends weakly, at most, on $\mathit{We}$ in the parameter regime of the present study, the transition Weber number $\mathit{We}_{C}$ towards splashing shows a strong dependence on $T$ and a discontinuity at $T_{L}$ . We quantitatively explain the splashing transition for $T<T_{L}$ by incorporating the temperature dependence of the physical properties in the theory by Riboux & Gordillo (Phys. Rev. Lett., vol. 113(2), 2014, 024507; J. Fluid Mech., vol. 772, 2015, pp. 630–648).


Corresponding author

Email address for correspondence:


Hide All
Bernardin, J. D., Stebbins, C. J. & Mudawar, I. 1997 Mapping of impact and heat transfer regimes of water drops impinging on a polished surface. Intl J. Heat Mass Transfer 40 (2), 247267.
Biance, A. L., Pirat, C. & Ybert, C. 2011 Drop fragmentation due to hole formation during Leidenfrost impact. Phys. Fluids 23, 022104.
Bouwhuis, W., van der Veen, R. C. A., Tran, T., Keij, D. L., Winkels, K. G., Peters, I. R., van der Meer, D., Sun, C., Snoeijer, J. H. & Lohse, D. 2012 Maximal air bubble entrainment at liquid-drop impact. Phys. Rev. Lett. 109 (26), 264501.
Chandra, S. & Avedisian, C. T. 1991 On the collision of a droplet with a solid surface. Proc. R. Soc. Lond. A 432, 1341.
Driscoll, M. M., Stevens, C. S. & Nagel, S. R. 2010 Thin film formation during splashing of viscous liquids. Phys. Rev. E 82 (3), 036302.
Inada, S., Miyasaka, Y., Sakamoto, K. & Hojo, K. 1988 Liquid–solid contact state and fluctuation of the vapor film thickness of a drop impinging on a heated surface. J. Chem. Engng Japan 21 (5), 463468.
Khavari, M., Sun, C., Lohse, D. & Tran, T. 2015 Fingering patterns during droplet impact on heated surfaces. Soft Matt. 11 (17), 32983303.
Kolinski, J., Rubinstein, S., Mandre, S., Brenner, M. P., Weitz, D. & Mahadevan, L. 2012 Skating on a film of air: drops impacting on a surface. Phys. Rev. Lett. 108 (7), 074503.
Latka, A., Strandburg-Peshkin, A., Driscoll, M. M., Stevens, C. S. & Nagel, S. R. 2012 Creation of prompt and thin-sheet splashing by varying surface roughness or increasing air pressure. Phys. Rev. Lett. 109 (5), 054501.
Lembach, A. N., Tan, H. B., Roisman, I. V., Gambaryan-Roisman, T., Zhang, Y., Tropea, C. & Yarin, A. L. 2010 Drop impact, spreading, splashing, and penetration into electrospun nanofiber mats. Langmuir 26 (12), 95169523.
Levin, Z. & Hobbs, P. V. 1971 Splashing of water drops on solid and wetted surfaces: hydrodynamics and charge separation. Phil. Trans. A 269, 555585.
Liu, Y., Tan, P. & Xu, L. 2015 Kelvin–Helmholtz instability in an ultrathin air film causes drop splashing on smooth surfaces. Proc. Natl Acad. Sci. USA 112 (11), 32803284.
Mandre, S. & Brenner, M. P. 2011 The mechanism of a splash on a dry solid surface. J. Fluid Mech. 690, 148172.
Mandre, S., Mani, M. & Brenner, M. P. 2009 Precursors to splashing of liquid droplets on a solid surface. Phys. Rev. Lett. 102 (13), 134502.
Mani, M., Mandre, S. & Brenner, M. P. 2010 Events before droplet splashing on a solid surface. J. Fluid Mech. 647, 163185.
Mundo, C., Sommerfeld, M. & Tropea, C. 1995 Droplet-wall collisions: experimental studies of the deformation and breakup process. Intl J. Multiphase Flow 21 (2), 151173.
Nair, H., Staat, H. J. J., Tran, T., van Houselt, A., Prosperetti, A., Lohse, D. & Sun, C. 2014 The Leidenfrost temperature increase for impacting droplets on carbon-nanofiber surfaces. Soft Matt. 10 (13), 21022109.
Palacios, J., Hernández, J., Gómez, P., Zanzi, C. & López, J. 2013 Experimental study of splashing patterns and the splashing/deposition threshold in drop impacts onto dry smooth solid surfaces. Exp. Therm. Fluid Sci. 44, 571582.
Quéré, D. 2013 Leidenfrost dynamics. Annu. Rev. Fluid Mech. 45 (1), 197215.
Rein, M. 1993 Phenomena of liquid-drop impact on solid and liquid surfaces. Fluid Dyn. Res. 12 (2), 6193.
Riboux, G. & Gordillo, J. M. 2014 Experiments of drops impacting a smooth solid surface: a model of the critical impact speed for drop splashing. Phys. Rev. Lett. 113 (2), 024507.
Riboux, G. & Gordillo, J. M. 2015 The diameters and velocities of the droplets ejected after splashing. J. Fluid Mech. 772, 630648.
Roisman, I. V., Rioboo, R. & Tropea, C. 2002 Normal impact of a liquid drop on a dry surface: model for spreading and receding. Proc. R. Soc. Lond. A 458 (2022), 14111430.
Shirota, M., van Limbeek, M. A. J., Sun, C., Prosperetti, A. & Lohse, D.2015. Dynamic Leidenfrost temperature for droplet impact on an isothermal superheated surface (submitted).
Sinha-Ray, S., Zhang, Y. & Yarin, A. L. 2011 Thorny devil nanotextured fibers: the way to cooling rates on the order of $1~\text{kW}~\text{cm}^{-2}$ . Langmuir 27 (1), 215226.
Stevens, C. S. 2014 Scaling of the splash threshold for low-viscosity fluids. Europhys. Lett. 106 (2), 24001.
Thoroddsen, S. T. & Sakakibara, J. 1998 Evolution of the fingering pattern of an impacting drop. Phys. Fluids 10 (6), 13591374.
Tran, T., Staat, H. J. J., Prosperetti, A., Sun, C. & Lohse, D. 2012 Drop impact on superheated surfaces. Phys. Rev. Lett. 108 (3), 036101.
Tran, T., Staat, H. J. J., Susarrey-Arce, A., Foertsch, T. C., van Houselt, A., Gardeniers, H. J. G. E., Prosperetti, A., Lohse, D. & Sun, C. 2013 Droplet impact on superheated micro-structured surfaces. Soft Matt. 9 (12), 32723282.
Tsai, P., Hendrix, M. H. W., Dijkstra, R. R. M., Shui, L. & Lohse, D. 2011 Microscopic structure influencing macroscopic splash at high Weber number. Soft Matt. 7 (24), 1132511333.
Vargaftik, N. B. 1975 Handbook of Physical Properties of Liquids and Gases. Springer.
van der Veen, R. C. A., Hendrix, M. H. W., Tran, T., Sun, C., Tsai, P. A. & Lohse, D. 2014 How microstructures affect air film dynamics prior to drop impact. Soft Matt. 10 (21), 37033707.
Visser, C. W., Frommhold, P. E., Wildeman, S., Mettin, R., Lohse, D. & Sun, C. 2015 Dynamics of high-speed micro-drop impact: numerical simulations and experiments at frame-to-frame times below 100 ns. Soft Matt. 11 (9), 17081722.
Visser, C. W., Tagawa, Y., Sun, C. & Lohse, D. 2012 Microdroplet impact at very high velocity. Soft Matt. 8 (41), 1073210737.
Wachters, L. H. J. & Westerling, N. A. J. 1966 The heat transfer from a hot wall to impinging water drops in the spheroidal state. Chem. Engng Sci. 21, 10471056.
Wang, A. B., Lin, C. H. & Chen, C. C. 2000 The critical temperature of dry impact for tiny droplet impinging on a heated surface. Phys. Fluids 12, 16221625.
Weickgenannt, C. M., Zhang, Y., Sinha-Ray, S., Roisman, I. V., Gambaryan-Roisman, T., Tropea, C. & Yarin, A. L. 2011 Thorny devil nanotextured fibers: the way to cooling rates on the order of $1~\text{kW}~\text{cm}^{-2}$ . Phys. Rev. E 84 (3), 036310.
Worthington, A. M. 1876 On the forms assumed by drops of liquids falling vertically on a horizontal plate. Proc. R. Soc. Lond. 25 (171-178), 261272.
Xu, L., Zhang, W. W. & Nagel, S. R. 2005 Drop splashing on a dry smooth surface. Phys. Rev. Lett. 94 (18), 184505.
Yao, S. C. & Cai, K. Y. 1988 The dynamics and Leidenfrost temperature of drops impacting on a hot surface at small angles. Exp. Therm. Fluid Sci. 1 (4), 363371.
Yarin, A. L. 2006 Drop impact dynamics: splashing, spreading, receding, bouncing…. Annu. Rev. Fluid Mech. 38, 159192.
Yarin, A. L. & Weiss, D. A. 1995 Impact of drops on solid surfaces: self-similar capillary waves, and splashing as a new type of kinematic discontinuity. J. Fluid Mech. 283 (1), 141173.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed