Skip to main content Accessibility help
×
Home

Perturbation theory for metal pad roll instability in cylindrical reduction cells

  • W. Herreman (a1), C. Nore (a1), J.-L. Guermond (a2), L. Cappanera (a3), N. Weber (a4) and G. M. Horstmann (a4)...

Abstract

We propose a new theoretical model for metal pad roll instability in idealized cylindrical reduction cells. In addition to the usual destabilizing effects, we model viscous and Joule dissipation and some capillary effects. The resulting explicit formulas are used as theoretical benchmarks for two multiphase magnetohydrodynamic solvers, OpenFOAM and SFEMaNS. Our explicit formula for the viscous damping rate of gravity waves in cylinders with two fluid layers compares excellently to experimental measurements. We use our model to locate the viscously controlled instability threshold in cylindrical shallow reduction cells but also in Mg–Sb liquid metal batteries with decoupled interfaces.

Copyright

Corresponding author

Email address for correspondence: wietze@limsi.fr

References

Hide All
Antille, J. P., Descloux, J., Flueck, M. & Romerio, M. V. 1999 Eigenmodes and interface description in a Hall–Heroult cell. In Light Metals, pp. 333338. TMS.
Ashour, R., Kelley, D. H., Salas, A., Starace, M., Weber, N. & Weier, T. 2018 Competing forces in liquid metal electrodes and batteries. J. Power Sources 378, 301310.
Banerjee, S. K. & Evans, J. W. 1990 Measurements of magnetic fields and electromagnetically driven melt flow in a physical model of a Hall–Héroult cell. Metall. Trans. B 21 (1), 5969.
Bojarevics, V. & Pericleous, K. 2006 Comparison of MHD models for aluminium reduction cells. In Light Metals, pp. 347352. TMS.
Bojarevics, V. & Pericleous, K. 2008 Shallow water model for aluminium electrolysis cells with variable top and bottom. In Light Metals, pp. 403408. TMS.
Bojarevics, V. & Romerio, M. V. 1994 Long waves instability of liquid metal–electrolyte interface in aluminium electrolysis cells: a generalization of Sele’s criterion. Eur. J. Mech. (B/Fluids) 13, 3356.
Bojarevics, V. & Tucs, A. 2017 MHD of large scale liquid metal batteries. In Light Metals 2017, pp. 687692. Springer.
Bradwell, D. J., Kim, H., Sirk, A. H. C. & Sadoway, D. R. 2012 Magnesium–antimony liquid metal battery for stationary energy storage. J. Am. Chem. Soc. 134 (4), 18951897.
Cappanera, L., Guermond, J.-L., Herreman, W. & Nore, C. 2018 Momentum-based approximation of incompressible multiphase fluid flows. Intl J. Numer. Meth. Fluids 86 (8), 541563.
Case, K. M. & Parkinson, W. C. 1957 Damping of surface waves in an incompressible liquid. J. Fluid Mech. 2 (02), 172184.
Davidson, P. A. & Boivin, R. F. 1992 Hydrodynamics of aluminium reduction cells. In Light Metals, pp. 11991204. TMS.
Davidson, P. A. & Lindsay, R. I. 1998 Stability of interfacial waves in aluminium reduction cells. J. Fluid Mech. 362, 273295.
Descloux, J., Flueck, M. & Romerio, M. V. 1991 Modelling for instabilities in Hall–Heroult cells: mathematical and numerical aspects. In Magnetohydrodynamics in Process Metallurgy, pp. 107110. TMS.
Descloux, J., Flueck, M. & Romerio, M. V. 1994 Stability in aluminium reduction cells: a spectral problem solved by an iterative procedure. In Light Metals, pp. 275281. TMS.
Descloux, J. & Romerio, M. V. 1989 On the analysis by perturbation methods of the anodic current fluctuations in an electrolytic cell for aluminium. In Light Metals, pp. 237243. TMS.
Flueck, M., Hofer, T., Picasso, M., Rappaz, J. & Steiner, G. 2009 Scientific computing for aluminium production. Intl J. Numer. Anal. Model. 6 (3), 489504.
Flueck, M., Janka, A., Laurent, C., Picasso, M., Rappaz, J. & Steiner, G. 2010 Some mathematical and numerical aspects in aluminum production. J. Sci. Comput. 43 (3), 313325.
Gerbeau, J.-F., Le Bris, C. & Lelièvre, T. 2006 Mathematical Methods for the Magnetohydrodynamics of Liquid Metals. Clarendon Press.
Gerbeau, J.-F., Lelièvre, T. & Le Bris, C. 2003 Simulations of MHD flows with moving interfaces. J. Comput. Phys. 184 (1), 163191.
Gerbeau, J.-F., Lelièvre, T. & Le Bris, C. 2004 Modeling and simulation of the industrial production of aluminium: the nonlinear approach. Comput. Fluids 33 (5), 801814.
Guermond, J.-L., Laguerre, R., Léorat, J. & Nore, C. 2007 An interior penalty Galerkin method for the MHD equations in heterogeneous domains. J. Comput. Phys. 221 (1), 349369.
Guermond, J.-L., Laguerre, R., Léorat, J. & Nore, C. 2009 Nonlinear magnetohydrodynamics in axisymmetric heterogeneous domains using a Fourier/finite element technique and an interior penalty method. J. Comput. Phys. 228 (8), 27392757.
Herreman, W., Nore, C., Cappanera, L. & Guermond, J.-L. 2015 Tayler instability in liquid metal columns and liquid metal batteries. J. Fluid Mech. 771, 79114.
Horstmann, G. M., Weber, N. & Weier, T. 2018 Coupling and stability of interfacial waves in liquid metal batteries. J. Fluid Mech. 845, 135.
Horstmann, G. M., Wylega, M. & Weier, T. 2019 Measurement of interfacial wave dynamics in orbitally shaken cylindrical containers using ultrasonic pulse-echo techniques. Exps. Fluids 60 (4), 56.
Ibrahim, R. A. 2005 Liquid Sloshing Dynamics: Theory and Applications. Cambridge University Press.
Kim, H., Boysen, D. A., Ouchi, T. & Sadoway, D. R. 2013 Calcium–bismuth electrodes for large-scale energy storage (liquid metal batteries). J. Power Sources 241, 239248.
Lamb, H. 1945 Hydrodynamics, vol. 43. Cambridge University Press.
Lukyanov, A., El, G. & Molokov, S. 2001 Instability of MHD-modified interfacial gravity waves revisited. Phys. Lett. A 290 (3), 165172.
Molokov, S. 2018 The nature of interfacial instabilities in liquid metal batteries in a vertical magnetic field. Eur. Phys. Lett. 121 (4), 44001.
Molokov, S., El, G. & Lukyanov, A. 2011 Classification of instability modes in a model of aluminium reduction cells with a uniform magnetic field. Theor. Comput. Fluid Dyn. 25 (5), 261279.
Moreau, R. J. & Ziegler, D. 1986 Stability of aluminum cells – a new approach. In Light Metals, pp. 359364. TMS.
Munger, D. & Vincent, A. 2006a Direct simulations of MHD instabilities in aluminium reduction cells. Magnetohydrodynamics 42 (4), 417425.
Munger, D. & Vincent, A. 2006b Electric boundary conditions at the anodes in aluminum reduction cells. Metall. Mater. Trans. B 37 (6), 10251035.
Munger, D. & Vincent, A. 2006c A level set approach to simulate magnetohydrodynamic instabilities in aluminum reduction cells. J. Comput. Phys. 217 (2), 295311.
Nore, C., Quiroz, D. C., Cappanera, L. & Guermond, J.-L. 2016 Direct numerical simulation of the axial dipolar dynamo in the Von Kármán sodium experiment. Europhys. Lett. 114 (6), 65002.
Pedchenko, A., Molokov, S. & Bardet, B. 2017 The effect of ‘wave breakers’ on the magnetohydrodynamic instability in aluminum reduction cells. Metall. Mater. Trans. B 48 (1), 610.
Pedchenko, A., Molokov, S., Priede, J., Lukyanov, A. & Thomas, P. J. 2009 Experimental model of the interfacial instability in aluminium reduction cells. Eur. Phys. Lett. 88 (2), 24001.
Potocnik, V. 1988 Modeling of metal-bath interface waves in Hall–Heroult cells using ester/phoenics. In Light Metals, pp. 227235. TMS.
Potocnik, V. & Laroche, F. 2001 Comparison of measured and calculated metal pad velocities for different prebake cell designs. In Light Metals, pp. 419425. TMS.
Reclari, M., Dreyer, M., Tissot, S., Obreschkow, D., Wurm, F. M. & Farhat, M. 2014 Surface wave dynamics in orbital shaken cylindrical containers. Phys. Fluids 26 (5), 052104.
Renaudier, S., Bardet, B., Steiner, G., Pedcenko, A., Rappaz, J., Molokov, S. & Masserey, A. 2016 Unsteady MHD Modeling Applied to Cell Stability, pp. 579584. Springer International Publishing.
Romerio, M. V. & Antille, J. 2000 The numerical approach to analyzing flow stability in the aluminum reduction cell. Aluminium 76 (12), 10311037.
Sele, T. 1977 Instabilities of the metal surface in electrolytic alumina reduction cells. Metall. Mater. Trans. B 8 (4), 613618.
Severo, D., Gusberti, V., Schneider, A.-F., Pinto, E. C. V. & Potocnik, V. 2008 Comparison of various methods for modeling the metal-bath interface. In Light Metals, p. 413. TMS.
Severo, D. S., Schneider, A.-F., Pinto, E. C. V., Gusberti, V. & Potocnik, V. 2005 Modeling magnetohydrodynamics of aluminum electrolysis cells with ANSYS and CFX. In Light Metals, pp. 475480. TMS.
Sneyd, A. D. 1985 Stability of fluid layers carrying a normal electric current. J. Fluid Mech. 156, 223236.
Sneyd, A. D. & Wang, A. 1994 Interfacial instability due to MHD mode coupling in aluminium reduction cells. J. Fluid Mech. 263, 343360.
Sreenivasan, B., Davidson, P. A. & Etay, J. 2005 On the control of surface waves by a vertical magnetic field. Phys. Fluids 17 (11), 117101.
Steiner, G.2009 Simulation numérique de phénomènes MHD: application à l’électrolyse de l’aluminium. PhD thesis, École Polytechnique Fédérale de Lausanne.
Sun, H., Zikanov, O. & Ziegler, D. P. 2004 Non-linear two-dimensional model of melt flows and interface instability in aluminum reduction cells. Fluid Dyn. Res. 35 (4), 255274.
Urata, N., Mori, K. & Ikeuchi, H. 1976 Behavior of bath and molten metal in aluminum electrolytic cell. WAA Translation from: J. Japan Inst. Light Met. 26 (11), 30.
Viola, F. & Gallaire, F. 2018 Theoretical framework to analyze the combined effect of surface tension and viscosity on the damping rate of sloshing waves. Phys. Rev. Fluids 3, 094801.
Wang, K., Jiang, K., Chung, B., Ouchi, T., Burke, P. J., Boysen, D. A., Bradwell, D. J., Kim, H., Muecke, U. & Sadoway, D. R. 2014 Lithium-antimony-lead liquid metal battery for grid-level energy storage. Nature 514 (7522), 348350.
Watson, G. N. 1995 A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press.
Weber, N., Beckstein, P., Galindo, V., Herreman, W., Nore, C., Stefani, F. & Weier, T. 2017a Metal pad roll instability in liquid metal batteries. Magnetohydrodynamics 53 (1), 129140.
Weber, N., Beckstein, P., Galindo, V., Starace, M. & Weier, T. 2018 Electro-vortex flow simulation using coupled meshes. Comput. Fluids 168, 101109.
Weber, N., Beckstein, P., Herreman, W., Horstmann, G. M., Nore, C., Stefani, F. & Weier, T. 2017b Sloshing instability and electrolyte layer rupture in liquid metal batteries. Phys. Fluids 29 (5), 054101.
Weber, N., Galindo, V., Stefani, F. & Weier, T. 2014 Current-driven flow instabilities in large-scale liquid metal batteries, and how to tame them. J. Power Sources 265 (0), 166173.
Weber, N., Galindo, V., Stefani, F., Weier, T. & Wondrak, T. 2013 Numerical simulation of the Tayler instability in liquid metals. New J. Phys. 15 (4), 043034.
Ziegler, D. P. 1993 Stability of metal/electrolyte interface in Hall–Héroult cells: effect of the steady velocity. Metall. Mater. Trans. B 24 (5), 899906.
Zikanov, O. 2015 Metal pad instabilities in liquid metal batteries. Phys. Rev. E 92 (6), 063021.
Zikanov, O. 2018 Shallow water modeling of rolling pad instability in liquid metal batteries. Theor. Comput. Fluid Dyn. 32 (3), 325347.
Zikanov, O., Sun, H. & Ziegler, D. P. 2004 Shallow water model of flows in Hall–Héroult cells. In Light Metals, pp. 445452. TMS.
Zikanov, O., Thess, A., Davidson, P. A. & Ziegler, D. P. 2000 A new approach to numerical simulation of melt flows and interface instability in Hall–Heroult cells. Metall. Mater. Trans. B 31 (6), 15411550.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Type Description Title
UNKNOWN
Supplementary materials

Herreman et al. supplementary material
Herreman et al. supplementary material

 Unknown (115 KB)
115 KB

Perturbation theory for metal pad roll instability in cylindrical reduction cells

  • W. Herreman (a1), C. Nore (a1), J.-L. Guermond (a2), L. Cappanera (a3), N. Weber (a4) and G. M. Horstmann (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed