Skip to main content Accessibility help
×
Home

Perturbation theory and numerical modelling of weakly and moderately nonlinear dynamics of the incompressible Richtmyer–Meshkov instability

  • A. L. Velikovich (a1), M. Herrmann (a2) and S. I. Abarzhi (a3)
  • Please note a correction has been issued for this article.

Abstract

A study of incompressible two-dimensional (2D) Richtmyer–Meshkov instability (RMI) by means of high-order perturbation theory and numerical simulations is reported. Nonlinear corrections to Richtmyer’s impulsive formula for the RMI bubble and spike growth rates have been calculated for arbitrary Atwood number and an explicit formula has been obtained for it in the Boussinesq limit. Conditions for early-time acceleration and deceleration of the bubble and the spike have been elucidated. Theoretical time histories of the interface curvature at the bubble and spike tip and the profiles of vertical and horizontal velocities have been calculated and favourably compared to simulation results. In our simulations we have solved 2D unsteady Navier–Stokes equations for immiscible incompressible fluids using the finite volume fractional step flow solver NGA developed by Desjardins et al. (J. Comput. Phys., vol. 227, 2008, pp. 7125–7159) coupled to the level set based interface solver LIT (Herrmann, J. Comput. Phys., vol. 227, 2008, pp. 2674–2706). We study the impact of small amounts of viscosity on the flow dynamics and compare simulation results to theory to discuss the influence of the theory’s ideal inviscid flow assumption.

Copyright

Corresponding author

Email address for correspondence: sasha.velikovich@nrl.navy.mil

Footnotes

Hide All

The original version of this article was published with the incorrect affiliation for S. I. Abarzhi. A notice detailing this has been published online and in print, and the error rectified in the online PDF and HTML copies.

Footnotes

References

Hide All
Abarzhi, S. I. 2002 A new type of the evolution of the bubble front in the Richtmyer–Meshkov instability. Phys. Lett. A 294 (2), 95100.
Abarzhi, S. I. 2008 Review of nonlinear dynamics of the unstable fluid interface: conservation laws and group theory. Phys. Scr. T132, 014012.
Abarzhi, S. I. 2010 Review of theoretical modelling approaches of Rayleigh–Taylor instabilities and turbulent mixing. Phil. Trans. R. Soc. Lond. A 368 (1916), 18091828.
Abarzhi, S. I., Gauthier, S. & Sreenivasan, K. R. 2013 Turbulent mixing and beyond: non-equilibrium processes from atomistic to astrophysical scales. Phil. Trans. R. Soc. Lond. A 371, 20130268.
Abarzhi, S. I., Nishihara, K. & Glimm, J. 2003 Rayleigh–Taylor and Richtmyer–Meshkov instabilities for fluids with a finite density ratio. Phys. Lett. A 317 (5–6), 470476.
Aglitskiy, Y., Karasik, M., Velikovich, A. L., Serlin, V., Weaver, J. L., Kessler, T. J., Nikitin, S. P., Schmitt, A. J., Obenschain, S. P., Metzler, N. & Oh, J. 2012 Observed transition from Richtmyer–Meshkov jet formation through feedout oscillations to Rayleigh–Taylor instability in a laser target. Phys. Plasmas 10 (10), 102707.
Aglitskiy, Y., Velikovich, A. L., Karasik, M., Metzler, N., Zalesak, S. T., Schmitt, A. J., Phillips, L., Gardner, J. H., Serlin, V., Weaver, J. L. & Obenschain, S. P. 2010 Basic hydrodynamics of Richtmyer–Meshkov-type growth and oscillations in the inertial confinement fusion-relevant conditions. Phil. Trans. R. Soc. Lond. A 368 (1916), 17391768.
Alon, U., Hecht, J., Mukamel, D. & Shvarts, D. 1994 Scale invariant mixing rates of hydrodynamically unstable interfaces. Phys. Rev. Lett. 72 (18), 28672870.
Alon, U., Hecht, J., Ofer, D. & Shvarts, D. 1995 Power-laws and similarity of Rayleigh–Taylor and Richtmyer–Meshkov mixing fronts at all density ratios. Phys. Rev. Lett. 74 (4), 534537.
Anisimov, S. I., Drake, R. P., Gauthier, S., Meshkov, E. E. & Abarzhi, S. I. 2013 What is certain and what is not so certain in our knowledge of Rayleigh–Taylor mixing? Phil. Trans. R. Soc. Lond. A 371, 20130266.
Aprelkov, O. N., Igonin, V. V., Lebedev, A. I., Myshkina, I. Yu. & Ol’khov, O. V. 2010 Numerical and experimental study of Richtmyer–Meshkov instability in condensed matter. Phys. Scr. T142, 014025.
Baker, G. A. & Grave-Morris, P. 1981 Padé Approximants, Part I: Basic Theory. Addison-Wesley.
Bakhrakh, S. M., Bezrukova, I. Yu., Kovaleva, A. D., Kosarim, S. S. & Ol’khov, O. V. 2006 Cumulative instability of the surface of condensed substances. Tech. Phys. Lett. 32 (2), 103105.
Bender, C. M. & Orszag, S. A. 1978 Advanced Mathematical Methods for Scientists and Engineers. McGraw Hill.
Berning, M. & Rubenchik, A. M. 1998 A weakly nonlinear theory for the dynamical Rayleigh–Taylor instability. Phys. Fluids 10 (7), 15641587.
Bodner, S. E., Colombant, D. G., Gardner, J. H., Lehmberg, R. H., McCrory, R. L., Seka, W., Verdon, C. P., Knauer, J. P., Afeyan, B. B. & Powell, H. T. 1998 Direct-drive laser fusion: status and prospects. Phys. Plasmas 5 (5), 19011918.
Brackbill, J. U., Kothe, D. B. & Zemach, C. 1992 A continuum method for modeling surface tension. J. Comput. Phys. 100 (2), 335354.
Brouillette, M. 2002 The Richtmyer–Meshkov instability. Annu. Rev. Fluid Mech. 34, 445468.
Buttler, W. T., Oró, D. M., Preston, D. L., Mikaelian, K. O., Cherne, F. J., Hixson, R. S., Mariam, F. G., Morris, C., Stone, J. B., Terrones, G. & Tupa, D. 2012 Unstable Richtmyer–Meshkov growth of solid and liquid metals in vacuum. J. Fluid Mech. 703, 6084.
Carlès, P. & Popinet, S. 2001 Viscous nonlinear theory of Richtmyer–Meshkov instability. Phys. Fluids 13 (7), 18331836.
Chapman, P. R. & Jacobs, J. W. 2006 Experiments on the three-dimensional incompressible Richtmyer–Meshkov instability. Phys. Fluids 18 (7), 074101.
Cokelet, E. D. 1977 Steep gravity waves in water of arbitrary uniform depth. Phil. Trans. R. Soc. Lond. A 286 (1335), 183230.
Cotrell, D. L. & Cook, A. W. 2007 Scaling the incompressible Richtmyer–Meshkov instability. Phys. Fluids 19 (7), 078105.
Desjardins, O., Blanquart, G., Balarac, G. & Pitsch, H. 2008 High order conservative finite difference scheme for variable density low Mach number turbulent flows. J. Comput. Phys. 227 (15), 71257159.
Dhotre, A., Ramaprabhu, P. & Dimonte, G. 2008 A detailed numerical investigation of the single-mode Richtmyer–Meshkov instability. Bull. Am. Phys. Soc. 53 (15), 157.
Dimonte, G. 1999 Nonlinear evolution of the Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Phys. Plasmas 6 (5), 20092015.
Dimonte, G., Morrison, J., Hulsey, S., Nelson, D., Weaver, S., Susoeff, A., Ron Hawke, R., Schneider, M., Batteaux, J., Dean Lee, D. & Ticehurst, J. 1996 A linear electric motor to study turbulent hydrodynamics. Rev. Sci. Instrum. 67 (1), 302306.
Dimonte, G. & Ramaprabhu, P. 2010 Simulations and model of the nonlinear Richtmyer–Meshkov instability. Phys. Fluids 22 (1), 014104.
Dimonte, G., Terrones, G., Cherne, F. J., Germann, T. C., Dupont, V., Kadau, K., Buttler, W. T., Oro, D. M., Morris, C. & Preston, D. L. 2011 Use of the Richtmyer–Meshkov instability to infer yield stress at high-energy densities. Phys. Rev. Lett. 107 (25), 264502.
Drake, R. P. 2009 Perspectives of high energy density physics. Phys. Plasmas 16 (5), 055501.
Emmons, H. W., Chang, C. T. & Watson, B. C. 1960 Taylor instability of finite surface waves. J. Fluid Mech. 7 (2), 177193.
Fraley, G. 1986 Rayleigh–Taylor stability for a normal shock-wave density discontinuity interaction. Phys. Fluids 29 (2), 376386.
Glendinning, S. G., Bolstad, J., Braun, D. G., Edwards, M. J., Hsing, W. W., Lasinski, B. F., Louis, H., Miles, A., Moreno, J., Peyser, T. A., Remington, B. A., Robey, H. F., Turano, E. J., Verdon, C. P. & Zhou, Y. 2003 Effect of shock proximity on Richtmyer–Meshkov growth. Phys. Plasmas 10 (5), 19311936.
Goncharov, V. N. 2002 Analytical model of nonlinear, single-mode, classical Rayleigh–Taylor instability. Phys. Rev. Lett. 88 (13), 134502.
Griffond, J. 2006 Linear interaction analysis for Richtmyer–Meshkov instability at low Atwood numbers. Phys. Fluids 18 (5), 054106.
Grove, J. W., Holmes, R., Sharp, D. H., Yang, Y. & Zhang, Q. 1993 Quantitative theory of Richtmyer–Meshkov instability. Phys. Rev. Lett. 71 (21), 34733476.
Haan, S. W. 1991 Weakly nonlinear hydrodynamic instabilities in inertial fusion. Phys. Fluids B 3 (8), 23492355.
Hazak, G. 1996 Lagrangian formalism for the Rayleigh–Taylor instability. Phys. Rev. Lett. 76 (22), 41674170.
Hecht, J., Alon, U. & Shvarts, D. 1994 Potential flow models of Rayleigh–Taylor and Richtmyer–Meshkov bubble fronts. Phys. Fluids 6 (12), 40194030.
Herrmann, M. 2008 A balanced force refined level set grid method for two-phase flows on unstructured flow solver grids. J. Comput. Phys. 227 (4), 26742706.
Herrmann, M. 2010 A parallel Eulerian interface tracking/Lagrangian point particle multi-scale coupling procedure. J. Comput. Phys. 229 (3), 745759.
Herrmann, M., Moin, P. & Abarzhi, S. I. 2008 Nonlinear evolution of the Richtmyer–Meshkov instability. J. Fluid Mech. 612, 311338.
Holmes, R. L., Dimonte, G., Fryxell, B., Gittings, M. L., Grove, J. W., Schneider, M., Sharp, D. H., Velikovich, A. L., Weaver, R. P. & Zhang, Q. 1999 Richtmyer–Meshkov instability growth: experiment, simulation and theory. J. Fluid Mech. 389, 5579.
Holyer, J. Y. 1979 Large amplitude progressive interfacial waves. J. Fluid Mech. 93, 433448.
Ingraham, R. L. 1954 Taylor instability of the interface between superposed fluids – solution by successive approximations. Proc. Phys. Soc. B 67 (10), 748752.
Jacobs, J. W. & Catton, I. 1988 Three-dimensional Rayleigh–Taylor instability. 1. Weakly nonlinear theory. J. Fluid Mech. 187, 329352.
Jacobs, J. W., Jenkins, D. G., Klein, D. L. & Benjamin, R. F. 1995 Nonlinear growth of the shock accelerated instability of a thin fluid layer. J. Fluid Mech. 295, 2332.
Jacobs, J. W. & Sheeley, M. 1996 Experimental study of incompressible Richtmyer–Meshkov instability. Phys. Fluids 8 (2), 405415.
Jiang, G.-S. & Peng, D. 2000 Weighted ENO schemes for Hamilton–Jacobi equations. SIAM J. Sci. Comput. 21 (6), 21262143.
Kadau, K., Barber, J. L., Germann, T. C., Holian, B. L. & Alder, B. J. 2010 Atomistic methods in fluid simulation. Phil. Trans. R. Soc. Lond. A 368, 15471560.
Kivity, Y. & Hanin, M. 1981 Stability of interface and shock-wave driven by initial pressure discontinuity. Phys. Fluids 24 (6), 10101016.
Kotelnikov, A. D., Ray, J. & Zabusky, N. J. 2000 Vortex morphologies on reaccelerated interfaces: visualization, quantification and modeling of one- and two-mode compressible and incompressible environments. Phys. Fluids 12 (12), 32453264.
Layzer, D. 1955 On the instability of superposed fluids in a gravitational field. Astrophys. J. 122 (1), 112.
Likhachev, O. A. & Jacobs, J. W. 2005 A vortex model for Richtmyer–Meshkov instability accounting for finite Atwood number. Phys. Fluids 17 (3), 031704.
Matsuoka, C. 2010 Renormalization group approach to interfacial motion in incompressible Richtmyer–Meshkov instability. Phys. Rev. E 82 (3), 036320.
Matsuoka, C. & Nishihara, K. 2006 Vortex core dynamics and singularity formations in incompressible Richtmyer–Meshkov instability. Phys. Rev. E 73 (2), 026304.
Matsuoka, C., Nishihara, K. & Fukuda, Y. 2003 Nonlinear evolution of an interface in the Richtmyer–Meshkov instability. Phys. Rev. E 67 (3), 036301; erratum, Phys. Rev. E, 68(2) 029902.
Menikoff, R. & Zemach, C. 1983 Rayleigh–Taylor instability and use of conformal maps for ideal fluid flow. J. Comput. Phys. 51 (1), 2864.
Meshkov, E. E. 1969 Instability of the interface of two gases accelerated by a shock. Fluid Dyn. 4 (5), 101104.
Meshkov, E. E.2006 Studies of Hydrodynamic Instabilities in Laboratory Experiments (in Russian), Sarov, FGYC-VNIIEF, ISBN 5-9515-0069-9.
Meshkov, E. 2013 Some peculiar features of hydrodynamic instability development. Phil. Trans. R. Soc. Lond. A 371, 20120288.
Meyer, K. A. & Blewett, P. J. 1972 Numerical investigation of the stability of a shock accelerated interface between two fluids. Phys. Fluids 15 (5), 753759.
Mikaelian, K. O. 1994 Comment on quantitative theory of Richtmyer–Meshkov instability. Phys. Rev. Lett. 73 (23), 3177.
Mikaelian, K. O. 1998 Analytic approach to nonlinear Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Phys. Rev. Lett. 80 (3), 508511.
Mikaelian, K. O. 2003 Explicit expressions for the evolution of single-mode Rayleigh–Taylor and Richtmyer–Meshkov instabilities at arbitrary Atwood numbers. Phys. Rev. E 67 (2), 026319.
Mikaelian, K. O. 2008 Limitations and failures of the Layzer model for hydrodynamic instabilities. Phys. Rev. E 78 (1), 015303.
Mueschke, N., Kraft, W. N., Dibua, O., Andrews, M. J. & Jacobs, J. W.2005 Numerical investigation of single-mode Richtmyer–Meshkov instability. In Proceedings of the ASME Fluids Engineering Division Summer Conference—2005, vol. 1, Pts A and B, pp. 185–193.
Neuvazhaev, V. Ye. & Parshukov, I. E. 1992 Study of the Richtmyer–Meshkov instability by the vortex method. In Mathematical Modelling and Applied Mathematics, Proceedings of the IMACS International Conference on Mathematical Modelling and Applied Mathematics, Moscow, USSR, 18–23 June 1990 (ed. Samarsky, A. A. & Sapagovas, M. P.), pp. 323335. North-Holland.
Niederhaus, C. E. & Jacobs, J. W. 2003 Experimental study of the Richtmyer–Meshkov instability of incompressible fluids. J. Fluid Mech. 485, 243277.
Nishihara, K., Wouchuk, J. G., Matsuoka, C., Ishizaki, R. & Zhakhovsky, V. V. 2010 Richmyer–Meshkov instability: theory of linear and nonlinear evolution. Phil. Trans. R. Soc. Lond. A 368 (1916), 17691807.
Olson, D. H. & Jacobs, J. W. 2009 Experimental study of Rayleigh–Taylor instability with a complex initial perturbation. Phys. Fluids 21 (3), 034103.
Oron, D., Arazi, L., Kartoon, D., Rikanati, A., Alon, U. & Shvarts, D. 2001 Dimensionality dependence of the Rayleigh–Taylor and Richtmyer–Meshkov instability late-time scaling laws. Phys. Plasmas 8 (6), 28832889.
Pelz, R. B. & Gulak, Y. 1997 Evidence for a real-time singularity in hydrodynamics from time series analysis. Phys. Rev. Lett. 79 (24), 49985001.
Peng, D., Merriman, B., Osher, S., Zhao, H. & Kang, M. 1999 A PDE-based fast local level set method. J. Comput. Phys. 155 (2), 410438.
Remington, B. A., Drake, R. P. & Ryutov, D. D. 2006 Experimental astrophysics with high power lasers and Z-pinches. Rev. Mod. Phys. 78 (3), 755807.
Richtmyer, R. D. 1960 Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Maths 13 (2), 297319.
Rikanati, A., Oron, D., Sadot, O. & Shvarts, D. 2003 High initial amplitude and high Mach number effects on the evolution of the single-mode Richtmyer–Meshkov instability. Phys. Rev. E 67 (2), 026307.
Rosenhead, L. 1931 The formation of vortices from a surface of discontinuity. Proc. R. Soc. Lond. A 134 (823), 170192.
Sadot, O., Erez, L., Alon, U., Oron, D., Levin, L. A., Erez, G., Ben-Dor, G. & Shvarts, D. 1998 Study of nonlinear evolution of single-mode and two bubble interaction under Richtmyer–Meshkov instability. Phys. Rev. Lett. 80 (8), 16541657.
Schwartz, L. W. 1974 Computer extension and analytic continuation of Stokes’ expansion for gravity waves. J. Fluid Mech. 62, 553578.
Shu, C. W. 1988 Total-variation-diminishing time discretization. SIAM J. Sci. Stat. Comput. 9 (6), 10731084.
Sohn, S.-I. 2003 Simple potential-flow model of Rayleigh–Taylor and Richtmyer–Meshkov instabilities for all density ratios. Phys. Rev. E 67 (2), 026301.
Sohn, S.-I. 2004 Density dependence of a Zufiria-type model for Rayleigh–Taylor bubble fronts. Phys. Rev. E 70 (4), 045301.
Sohn, S.-I. 2008 Density dependence of a Zufiria-type model for Rayleigh–Taylor bubble fronts. Phys. Rev. E 78 (1), 017302.
Sohn, S.-I. 2009 Effects of surface tension and viscosity on the growth rates of Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Phys. Rev. E 80 (5), 055302.
Sreenivasan, K. R. 1999 Fluid turbulence. Rev. Mod. Phys. 71 (2), S383S395.
Stanic, M., McFarland, J., Stellingwerf, R. F., Cassibry, J. T., Ranjan, D., Bonazza, R., Greenough, J. A. & Abarzhi, S. I. 2013 Non-uniform volumetric structures in Richtmyer–Meshkov flows. Phys. Fluids 25, 106107.
Stanic, M., Stellingverf, R. F., Cassibry, J. T. & Abarzhi, S. I. 2012 Scale coupling in Richtmyer–Meshkov flows induced by strong shocks. Phys. Plasmas 19 (8), 082706.
Stokes, G. G. 1849 On the theory of oscillatory waves. Trans. Camb. Phil. Soc. 8, 441455.
Sussman, M., Smereka, P. & Osher, S. 1994 A level set method for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114 (1), 146159.
Vandenboomgaerde, M., Gauthier, S. & Mügler, C. 2002 Nonlinear regime of a multimode Richtmyer–Meshkov instability: a simplified perturbation theory. Phys. Fluids 14 (3), 11111122.
Vandenboomgaerde, M., Mügler, C. & Gauthier, S. 1998 Impulsive model for the Richtmyer–Meshkov instability. Phys. Rev. E 58 (2), 18741882.
Van der Pijl, S. P., Segal, A., Vuik, C. & Wesseling, P. 2005 A mass-conserving Level–Set method for modelling of multi-phase flows. Intl J. Numer. Meth. Fluids 47 (4), 339361.
Velikovich, A. L. 1996 Analytic theory of Richtmyer–Meshkov instability for the case of reflected rarefaction wave. Phys. Fluids 8 (6), 16661679.
Velikovich, A. L. & Dimonte, G. 1996 Nonlinear perturbation theory of the incompressible Richtmyer–Meshkov instability. Phys. Rev. Lett. 76 (17), 31123115.
Velikovich, A. & Phillips, L. 1996 Instability of a plane centered rarefaction wave. Phys. Fluids 8 (4), 11071118.
Volkov, N. B., Maǐer, A. E. & Yalovets, A. P. 2001 The nonlinear dynamics of the interface between media possessing different densities and symmetries. Tech. Phys. Lett. 27 (1), 2024.
Volkov, N. B., Maǐer, A. E. & Yalovets, A. P. 2003 Nonlinear dynamics of the interface between continuous media with different densities. Tech. Phys. Lett. 48 (3), 275283.
White, J., Oakley, J., Anderson, M. & Bonazza, R. 2010 Experimental measurements of the nonlinear Rayleigh–Taylor instability using a magnetorheological fluid. Phys. Rev. E 81 (2), 026303.
Wouchuk, J. G. 2001a Growth rate of the linear Richtmyer–Meshkov instability when a shock is reflected. Phys. Rev. E 63 (5), 056303.
Wouchuk, J. G. 2001b Growth rate of the Richtmyer–Meshkov instability when a rarefaction is reflected. Phys. Plasmas 8 (6), 28902907.
Wouchuk, J. G. & Carretero, R. 2004 Linear perturbation growth at the trailing edge of a rarefaction wave. Phys. Plasmas 10 (11), 42374252.
Wu, S. J. 1999 Well-posedness in Sobolev spaces of the full water wave problem in 3-D. J. Am. Math. Soc. 12 (2), 445495.
Yang, Y., Zhang, Q. & Sharp, D. 1994 Small amplitude theory of Richtmyer–Meshkov instability. Phys. Fluids 6 (5), 18561873.
Zabusky, N. J., Kotelnikov, A. D., Gulak, Y. & Peng, G. 2003 Amplitude growth rate of Richtmyer–Meshkov unstable two-dimensional interface to intermediate times. J. Fluid Mech. 475, 147162.
Zhang, Q. 1998 Analytical solutions of Layzer-type approach to unstable interfacial fluid mixing. Phys. Rev. Lett. 81 (16), 33913394.
Zhang, Q. & Sohn, S.-I. 1996 An analytical nonlinear theory of Richtmyer–Meshkov instability. Phys. Lett. A 212 (3), 149155.
Zhang, Q. & Sohn, S.-I. 1997a Nonlinear theory of unstable fluid mixing driven by shock wave. Phys. Fluids 9 (4), 11061124.
Zhang, Q. & Sohn, S.-I. 1997b Padé approximation to an interfacial fluid mixing problem. Appl. Math. Lett. 10 (5), 121127.
Zhang, Q. & Sohn, S.-I. 1999 Quantitative theory of Richtmyer–Meshkov instability in three dimensions. Z. Angew. Math. Phys. 50, 146.
Zufiria, J. A. 1988 Bubble competition in Rayleigh–Taylor instability. Phys. Fluids 31 (3), 440446.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Perturbation theory and numerical modelling of weakly and moderately nonlinear dynamics of the incompressible Richtmyer–Meshkov instability

  • A. L. Velikovich (a1), M. Herrmann (a2) and S. I. Abarzhi (a3)
  • Please note a correction has been issued for this article.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

A correction has been issued for this article: