## References

Ahlers, G.
1987
Effect of time-periodic modulation of the driving on Taylor-vortex flow. Bull. Am. Phys. Soc.
32, 2068.

Ahlers, G. as cited by Barenghi, C. F. & Jones, C. A.
1989
Modulated Taylor–Couette flow. J. Fluid Mech.
208, 127–160.

Borrero-Echeverry, D., Schatz, M. F. & Tagg, R.
2010
Transient turbulence in Taylor–Couette flow. Phys. Rev. E
81, 025301.

Cadot, O., Titon, J. H. & Bonn, D.
2003
Experimental observation of resonances in modulated turbulence. J. Fluid Mech.
485, 161–170.

Cekli, H. E., Tipton, C. & Van De Water, W.
2010
Resonant enhancement of turbulent energy dissipation. Phys. Rev. Lett.
105, 044503.

Chavanne, X., Chilla, F., Castaing, B., Hebral, B., Chabaud, B. & Chaussy, J.
1997
Observation of the ultimate regime in Rayleigh–Bénard convection. Phys. Rev. Lett.
79, 3648.

Chien, C.-C., Blum, D. B. & Voth, G. A.
2013
Effects of fluctuation energy input on the small scales in turbulence. J. Fluid Mech.
737, 527–551.

Eckhardt, B., Grossmann, S. & Lohse, D.
2007
Torque scaling in turbulent Taylor–Couette flow between independently rotating cylinders. J. Fluid Mech.
581, 221–250.

Fardin, M. A., Perge, C. & Taberlet, N.
2014
‘The hydrogen atom of fluid dynamics’: introduction to the Taylor–Couette flow for soft matter scientists. Soft Matt.
10, 3523.

Ganske, A., Gebhardt, Th. & Grossmann, S.
1994
Taylor–Couette flow with time modulated inner cylinder velocity. Phys. Lett. A
192, 74–78.

van Gils, D. P. M., Bruggert, G. W., Lathrop, D. P., Sun, C. & Lohse, D.
2011
The Twente Turbulent Taylor–Couette (T^{3} C) facility: strongly turbulent (multi-phase) flow between independently rotating cylinders. Rev. Sci. Instrum.
82, 025105.

Grossmann, S. & Lohse, D.
2011
Multiple scaling in the ultimate regime of thermal convection. Phys. Fluids
23, 045108.

Grossmann, S., Lohse, D. & Sun, C.
2016
High Reynolds number Taylor–Couette turbulence. Annu. Rev. Fluid Mech.
48, 53–80.

Hamlington, P. E. & Dahm, W. J. A.
2009
Frequency response of periodically sheared homogeneous turbulence. Phys. Fluids
21, 055107.

He, S. & Jackson, S. D.
2009
An experimental study of pulsating turbulent flow in a pipe. Eur. J. Mech. (B/Fluids)
28 (2), 309–320.

von der Heydt, A., Grossmann, S. & Lohse, D.
2003a
Resonances in modulated turbulence. Phys. Rev. E
67, 046308.

von der Heydt, A., Grossmann, S. & Lohse, D.
2003b
Resonances in modulated turbulence. Part II. Numerical simulations. Phys. Rev. E
68, 066302.

Hooghoudt, J. O., Lohse, D. & Toschi, F.
2001
Decaying and kicked turbulence in a shell model. Phys. Fluids
13, 2013.

Huisman, S. G., van Gils, D. P. M., Grossmann, S., Sun, C. & Lohse, D.
2012
Ultimate turbulent Taylor–Couette flow. Phys. Rev. Lett.
108, 024501.

Huisman, S. G., Lohse, D. & Sun, C.
2013a
Statistics of turbulent fluctuations in counter-rotating Taylor–Couette flows. Phys. Rev. E
88, 063001.

Huisman, S. G., Scharnowski, S., Cierpka, C., Kähler, C., Lohse, D. & Sun, C.
2013b
Logarithmic boundary layers in strong Taylor–Couette turbulence. Phys. Rev. Lett.
110, 264501.

Jin, X.-L. & Xia, K.-Q.
2008
An experimental study of kicked thermal turbulence. J. Fluid Mech.
606, 133–151.

Kraichnan, R. H.
1962
Turbulent thermal convection at arbritrary Prandtl number. Phys. Fluids
5, 1374.

Kuczaj, A. K., Geurts, B. J. & Lohse, D.
2006
Response maxima in time-modulated turbulence: direct numerical simulations. Europhys. Lett.
73, 851.

Kuczaj, A. K., Geurts, B. J., Lohse, D. & van de Water, W.
2008
Turbulence modification by periodically modulated scale-dependent forcing. Comput. Fluids
37, 816–824.

Lodahl, C. R., Sumer, B. M. & Fredsøe, J.
1998
Turbulent combined oscillatory flow and current in a pipe. J. Fluid Mech.
373, 313–348.

Lohse, D.
2000
Periodically kicked turbulence. Phys. Rev. E
62, 4946.

Manna, M., Vacca, A. & Verzicco, R.
2012
Pulsating pipe flow with large-amplitude oscillations in the very high frequency regime. Part 1. Time-averaged analysis. J. Fluid Mech.
700, 246–282.

Mao, Z-.X. & Hanratty, T. J.
1986
Studies of the wall shear stress in a turbulent pulsating pipe flow. J. Fluid Mech.
170, 545–564.

Ostilla-Mónico, R., Verzicco, R., Grossmann, S. & Lohse, D.
2014
Turbulence decay towards the linearly stable regime of Taylor–Couette flow. J. Fluid Mech.
748, R3.

Ostilla-Mónico, R., Zhu, X., Spandan, V. S., Verzicco, R. & Lohse, D.
2017
Life stages of wall-bounded decay of Taylor–Couette turbulence. Phys. Rev. Fluids
2, 114601.

Ramaprian, B. R. & Tu, S. W.
1980
An experimental study of oscillatory pipe flow at transitional Reynolds number. J. Fluid Mech.
100, 513–544.

Sarpkaya, T.
1966
Experimental determination of the critical Reynolds number for pulsating Poiseuille flow. Trans. ASME: J. Basic Engng
88, 589–598.

Shemer, L., Wygnanski, I. & Kit, E.
1985
Pulsating flow in a pipe. J. Fluid Mech.
153, 313–337.

Sterl, S., Li, H.-M. & Zhong, J.-Q
2016
Dynamical and statistical phenomena of circulation and heat transfer in periodically forced rotating turbulent Rayleigh–Bénard convection. Phys. Rev. Fluids
1, 084401.

Verschoof, R. A., Huisman, S. G., van der Veen, R. C. A., Sun, C. & Lohse, D.
2016
Self-similar decay of high Reynolds number Taylor–Couette turbulence. Phys. Rev. Fluids
1, 062402(R).

Walsh, T. J. & Donnelly, R. J.
1988
Taylor–Couette flow with periodically corotated and counterrotated cylinders. Phys. Rev. Lett.
60, 700.

Womersley, J. R.
1955
Method for the calculation of velocity rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol.
127, 553–572.

Yellin, E. L.
1966
Laminar–turbulent transition process in pulsatile flow. Circulat. Res.
19, 791–804.

Yu, D. & Girimaji, S. S.
2006
Direct numerical simulation of homogeneous turbulence subject to periodic shear. J. Fluid Mech.
566, 117–151.