Skip to main content Accessibility help
×
Home

Penetrative turbulent Rayleigh–Bénard convection in two and three dimensions

  • Qi Wang (a1), Quan Zhou (a2), Zhen-Hua Wan (a1) and De-Jun Sun (a1)

Abstract

Penetrative turbulent Rayleigh–Bénard convection which depends on the density maximum of water near $4^{\circ }\text{C}$ is studied using two-dimensional and three-dimensional direct numerical simulations. The working fluid is water near $4\,^{\circ }\text{C}$ with Prandtl number $Pr=11.57$ . The considered Rayleigh numbers $Ra$ range from $10^{7}$ to $10^{10}$ . The density inversion parameter $\unicode[STIX]{x1D703}_{m}$ varies from 0 to 0.9. It is found that the ratio of the top and bottom thermal boundary-layer thicknesses ( $F_{\unicode[STIX]{x1D706}}=\unicode[STIX]{x1D706}_{t}^{\unicode[STIX]{x1D703}}/\unicode[STIX]{x1D706}_{b}^{\unicode[STIX]{x1D703}}$ ) increases with increasing $\unicode[STIX]{x1D703}_{m}$ , and the relationship between $F_{\unicode[STIX]{x1D706}}$ and $\unicode[STIX]{x1D703}_{m}$ seems to be independent of $Ra$ . The centre temperature $\unicode[STIX]{x1D703}_{c}$ is enhanced compared to that of Oberbeck–Boussinesq cases, as $\unicode[STIX]{x1D703}_{c}$ is related to $F_{\unicode[STIX]{x1D706}}$ with $1/\unicode[STIX]{x1D703}_{c}=1/F_{\unicode[STIX]{x1D706}}+1$ , $\unicode[STIX]{x1D703}_{c}$ is also found to have a universal relationship with $\unicode[STIX]{x1D703}_{m}$ which is independent of $Ra$ . Both the Nusselt number $Nu$ and the Reynolds number $Re$ decrease with increasing $\unicode[STIX]{x1D703}_{m}$ , the normalized Nusselt number $Nu(\unicode[STIX]{x1D703}_{m})/Nu(0)$ and Reynolds number $Re(\unicode[STIX]{x1D703}_{m})/Re(0)$ also have universal relationships with $\unicode[STIX]{x1D703}_{m}$ which seem to be independent of both $Ra$ and the aspect ratio $\unicode[STIX]{x1D6E4}$ . The scaling exponents of $Nu\sim Ra^{\unicode[STIX]{x1D6FC}}$ and $Re\sim Ra^{\unicode[STIX]{x1D6FD}}$ are found to be insensitive to $\unicode[STIX]{x1D703}_{m}$ despite of the remarkable change of the flow organizations.

Copyright

Corresponding author

Email addresses for correspondence: wanzh@ustc.edu.cn, dsun@ustc.edu.cn

References

Hide All
Ahlers, G., Araujo, F. F., Funfschilling, D., Grossmann, S. & Lohse, D. 2007 Non-Oberbeck-Boussinesq effects in gaseous Rayleigh–Bénard convection. Phys. Rev. Lett. 98 (5), 054501.
Ahlers, G., Brown, E., Araujo, F. F., Funfschilling, D., Grossmann, S. & Lohse, D. 2006 Non-Oberbeck–Boussinesq effects in strongly turbulent Rayleigh–Bénard convection. J. Fluid Mech. 569, 409445.
Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503537.
Antar, B. N. 1987 Penetrative double-diffusive convection. Phys. Fluids 30 (2), 322330.
Buffett, B. 2014 Geomagnetic fluctuations reveal stable stratification at the top of the Earth’s core. Nature 507 (7493), 484487.
Chillà, F. & Schumacher, J. 2012 New perspectives in turbulent Rayleigh–Bénard convection. Eur. Phys. J. E 35 (7), 58.
Chong, K. L., Huang, S.-D., Kaczorowski, M. & Xia, K.-Q. 2015 Condensation of coherent structures in turbulent flows. Phys. Rev. Lett. 115 (26), 264503.
Chong, K. L., Wagner, S., Kaczorowski, M., Shishkina, O. & Xia, K.-Q. 2018 Effect of Prandtl number on heat transport enhancement in Rayleigh–Bénard convection under geometrical confinement. Phys. Rev. Fluid 3 (1), 013501.
Chong, K. L. & Xia, K.-Q. 2016 Exploring the severely confined regime in Rayleigh–Bénard convection. J. Fluid Mech. 805, R4.
Chong, K. L., Yang, Y.-T., Huang, S.-D., Zhong, J.-Q., Stevens, R. J. A. M., Verzicco, R., Lohse, D. & Xia, K.-Q. 2017 Confined Rayleigh–Bénard, Rotating Rayleigh–Bénard, and double diffusive convection: a unifying view on turbulent transport enhancement through coherent structure manipulation. Phys. Rev. Lett. 119 (6), 064501.
Couston, L.-A., Lecoanet, D., Favier, B. & Le Bars, M. 2018 Order out of chaos: slowly reversing mean flows emerge from turbulently generated internal waves. Phys. Rev. Lett. 120 (24), 244505.
Dintrans, B., Brandenburg, A., Nordlund, Å & Stein, R. F. 2005 Spectrum and amplitudes of internal gravity waves excited by penetrative convection in solar-type stars. Astron. Astrophys. 438 (1), 365376.
Gebhart, B. & Mollendorf, J. C. 1977 A new density relation for pure and saline water. Deep-Sea Res. 24 (9), 831848.
Goluskin, D. & van der Poel, E. P. 2016 Penetrative internally heated convection in two and three dimensions. J. Fluid Mech. 791, R6.
Horn, S. & Shishkina, O. 2014 Rotating non-Oberbeck–Boussinesq Rayleigh–Bénard convection in water. Phys. Fluids 26 (5), 055111.
Horn, S., Shishkina, O. & Wagner, C. 2013 On non-Oberbeck–Boussinesq effects in three-dimensional Rayleigh–Bénard convection in glycerol. J. Fluid Mech. 724, 175202.
Hu, Y.-P., Li, Y.-R. & Wu, C.-M. 2015 Rayleigh–Bénard convection of cold water near its density maximum in a cubical cavity. Phys. Fluids 27 (3), 034102.
Huang, S.-D., Kaczorowski, M., Ni, R. & Xia, K.-Q. 2013 Confinement-induced heat-transport enhancement in turbulent thermal convection. Phys. Rev. Lett. 111 (10), 104501.
Huang, Y.-X. & Zhou, Q. 2013 Counter-gradient heat transport in two-dimensional turbulent Rayleigh–Bénard convection. J. Fluid Mech. 737, R3.
Johnston, H. & Doering, C. R. 2009 Comparison of turbulent thermal convection between conditions of constant temperature and constant flux. Phys. Rev. Lett. 102 (6), 064501.
Kong, D., Zhang, K., Schubert, G. & Anderson, J. D. 2018 Origin of jupiters cloud-level zonal winds remains a puzzle even after juno. Proc. Natl Acad. Sci. USA 115 (34), 84998504.
Large, E. & Andereck, C. D. 2014 Penetrative Rayleigh–Bénard convection in water near its maximum density point. Phys. Fluids 26 (9), 094101.
Lecoanet, D., Le Bars, M., Burns, K. J., Vasil, G. M., Brown, B. P., Quataert, E. & Oishi, J. S. 2015 Numerical simulations of internal wave generation by convection in water. Phys. Rev. E 91 (6), 063016.
Leighton, R. B. 1963 The solar granulation. Annu. Rev. Astron. Astrophys. 1 (1), 1940.
Liu, S., Xia, S.-N., Yan, R., Wan, Z.-H. & Sun, D.-J. 2018 Linear and weakly nonlinear analysis of Rayleigh–Bénard convection of perfect gas with non-Oberbeck–Boussinesq effects. J. Fluid Mech. 845, 141169.
Lohse, D. & Xia, K.-Q. 2010 Small-scale properties of turbulent Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 42, 335364.
Moore, D. R. & Weiss, N. O. 1973 Nonlinear penetrative convection. J. Fluid Mech. 61 (3), 553581.
Musman, S. 1968 Penetrative convection. J. Fluid Mech. 31 (2), 343360.
Ostilla-Mónico, R., van der Poel, E. P., Verzicco, R., Grossmann, S. & Lohse, D. 2014 Exploring the phase diagram of fully turbulent Taylor–Couette flow. J. Fluid Mech. 761, 126.
Ostilla-Mónico, R., Stevens, R. J. A. M., Grossmann, S., Verzicco, R. & Lohse, D. 2013 Optimal Taylor–Couette flow: direct numerical simulations. J. Fluid Mech. 719, 1446.
Sameen, A., Verzicco, R. & Sreenivasan, K. R. 2008 Non-Boussinesq convection at moderate Rayleigh numbers in low temperature gaseous helium. Phys. Scr. 2008 (T132), 014053.
Sameen, A., Verzicco, R. & Sreenivasan, K. R. 2009 Specific roles of fluid properties in non-Boussinesq thermal convection at the Rayleigh number of 2 × 108 . Eur. Phys. Lett. 86 (1), 14006.
Shishkina, O., Stevens, R. J. A. M., Grossmann, S. & Lohse, D. 2010 Boundary layer structure in turbulent thermal convection and its consequences for the required numerical resolution. New J. Phys. 12 (7), 075022.
Sugiyama, K., Calzavarini, E., Grossmann, S. & Lohse, D. 2009 Flow organization in two-dimensional non-Oberbeck–Boussinesq Rayleigh–Bénard convection in water. J. Fluid Mech. 637, 105135.
Sugiyama, K., Ni, R., Stevens, R. J. A. M., Chan, T. S., Zhou, S.-Q., Xi, H.-D., Sun, C., Grossmann, S., Xia, K.-Q. & Lohse, D. 2010 Flow reversals in thermally driven turbulence. Phys. Rev. Lett. 105 (3), 034503.
Toppaladoddi, S. & Wettlaufer, J. S. 2018 Penetrative convection at high Rayleigh numbers. Phys. Rev. Fluid 3 (4), 043501.
Van Gils, D. P. M., Huisman, S. G., Bruggert, G.-W., Sun, C. & Lohse, D. 2011 Torque scaling in turbulent Taylor–Couette flow with co-and counterrotating cylinders. Phys. Rev. Lett. 106 (2), 024502.
Veronis, G. 1963 Penetrative convection. Astrophys. J. 137, 641663.
Wang, Q., Wan, Z.-H., Yan, R. & Sun, D.-J. 2018a Multiple states and heat transfer in two-dimensional tilted convection with large aspect ratios. Phys. Rev. Fluid 3 (11), 113503.
Wang, Q., Wan, Z.-H., Yan, R. & Sun, D.-J. 2019a Flow organization and heat transfer in two-dimensional tilted convection with aspect ratio 0.5. Phys. Fluids 31 (2), 025102.
Wang, Q., Xia, S.-N., Wang, B.-F., Sun, D.-J., Zhou, Q. & Wan, Z.-H. 2018b Flow reversals in two-dimensional thermal convection in tilted cells. J. Fluid Mech. 849, 355372.
Wang, Q., Xia, S.-N., Yan, R., Sun, D.-J. & Wan, Z.-H. 2019b Non-Oberbeck-Boussinesq effects due to large temperature differences in a differentially heated square cavity filled with air. Intl J. Heat Mass Transfer 128, 479491.
Wang, Q., Xu, B.-L., Xia, S.-N., Wan, Z.-H. & Sun, D.-J. 2017 Thermal convection in a tilted rectangular cell with aspect ratio 0.5. Chin. Phys. Lett. 34 (10), 104401.
Weiss, S., He, X., Ahlers, G., Bodenschatz, E. & Shishkina, O. 2018 Bulk temperature and heat transport in turbulent Rayleigh–Bénard convection of fluids with temperature-dependent properties. J. Fluid Mech. 851, 374390.
Xia, S.-N., Wan, Z.-H., Liu, S., Wang, Q. & Sun, D.-J. 2016 Flow reversals in Rayleigh–Bénard convection with non-Oberbeck–Boussinesq effects. J. Fluid Mech. 798, 628642.
Zhang, J., Childress, S. & Libchaber, A. 1997 Non-Boussinesq effect: thermal convection with broken symmetry. Phys. Fluids 9 (4), 10341042.
Zhang, K. K. & Schubert, G. 1996 Penetrative convection and zonal flow on jupiter. Science 273 (5277), 941943.
Zhang, K. K. & Schubert, G. 2000 Teleconvection: remotely driven thermal convection in rotating stratified spherical layers. Science 290 (5498), 19441947.
Zhang, Y., Zhou, Q. & Sun, C. 2017 Statistics of kinetic and thermal energy dissipation rates in two-dimensional turbulent Rayleigh–Bénard convection. J. Fluid Mech. 814, 165184.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed