Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T11:40:53.003Z Has data issue: false hasContentIssue false

Patterns in rotating Rayleigh–Bénard convection at high rotation rates

Published online by Cambridge University Press:  30 June 2010

J. D. SCHEEL*
Affiliation:
Department of Physics, Occidental College, 1600 Campus Road, M21, Los Angeles, CA 90041, USA
P. L. MUTYABA
Affiliation:
Department of Physics, California Lutheran University, 3750, Thousand Oaks, CA 91360, USA
T. KIMMEL
Affiliation:
Department of Physics, California Lutheran University, 3750, Thousand Oaks, CA 91360, USA
*
Email address for correspondence: jscheel@oxy.edu

Abstract

We present the results from numerical and theoretical investigations of rotating Rayleigh–Bénard convection for relatively large dimensionless rotation rates, 170 < Ω < 274, and a Prandtl number of 6.4. Unexpected square patterns were found experimentally by Bajaj et al. (Phys. Rev. Lett., vol. 81, 1998, p. 806) in this parameter regime and near threshold for instability in the bulk. These square patterns have not yet been understood theoretically. Sánchez-Álvarez et al. (Phys. Rev. E, vol. 72, 2005, p. 036307) have found square patterns in numerical simulations for similar parameters when only the Coriolis force is included. We performed detailed numerical studies of rotating Rayleigh–Bénard convection for the same parameters as the experiments and simulations. To better understand these patterns, we compared the effects of the Coriolis force as well as the centrifugal force. We also computed the coefficients of the amplitude equation describing one-, two- and three-mode bulk solutions to rotating Rayleigh–Bénard convection. We find that squares are unstable, but we do find stable limit cycles consisting of three coupled oscillating amplitudes, which can superficially resemble squares, since one of the three amplitudes is rather small.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahlers, G. & Bajaj, K. M. S. 1999 Rayleigh–Bénard convection with rotation at small Prandtl numbers. In Pattern Formation in Continuous and Coupled Systems (ed. Golubitsky, M., Luss, D. & Strogatz, Steven H.), The IMA Volumes in Mathematics and its Applications, vol. 115. Springer.Google Scholar
Bajaj, K. M. S., Lui, J., Naberhuis, B. & Ahlers, G. 1998 Square patterns in Rayleigh–Bénard convection with rotation about a vertical axis. Phys. Rev. Lett. 81, 806809.CrossRefGoogle Scholar
Becker, N., Scheel, J. D., Cross, M. C. & Ahlers, G. 2006 Effect of the centrifugal force on domain chaos in Rayleigh–Bénard convection. Phys. Rev. E 73, 066309.CrossRefGoogle ScholarPubMed
Chang, Y., Liao, X. & Zhang, K. 2006 Convection in rotating annular channels heated from below. Part 2. Transitions from steady flow to turbulence. Geophys. Astrophys. Fluid Dynamics 100, 215.CrossRefGoogle Scholar
Chiam, K.-H., Paul, M. R., Cross, M. C. & Greenside, H. S. 2003 Mean flow and spiral defect chaos in Rayleigh–Bénard convection. Phys. Rev. E 67, 056206.CrossRefGoogle ScholarPubMed
Cross, M. C. & Greenside, H. 2009 Pattern Formation and Dynamics in Nonequilibrium Systems.CrossRefGoogle Scholar
Demircan, A., Scheel, S. & Seehafer, N. 2000 Heteroclinic behavior in rotating Rayleigh–Bénard convection. Eur. Phys. J. B 13, 765775.CrossRefGoogle Scholar
Demircan, A. & Seehafer, N. 2001 Nonlinear square patterns in Rayleigh–Bénard convection. Europhys. Lett. 53, 202208.CrossRefGoogle Scholar
Fischer, P. F. 1997 An overlapping Schwarz method for spectral element solutions of the incompressible Navier–Stokes equations. J. Comp. Phys. 133, 84101.CrossRefGoogle Scholar
Goldstein, H. F., Knobloch, E. & Silber, M. 1990 Planform selection in rotating convection. Phys. Fluids A 2, 625.CrossRefGoogle Scholar
Goldstein, H. F., Knobloch, E. & Silber, M. 1992 Planform selection in rotating convection: hexagonal symmetry. Phys. Rev. A 46, 4755.CrossRefGoogle ScholarPubMed
Hoyle, R. 2006 Pattern Formation. Cambridge University Press.CrossRefGoogle Scholar
Hu, Y., Ecke, R. E. & Ahlers, G. 1995 Time and length scales in rotating Rayleigh–Bénard convection. Phys. Rev. Lett. 74, 50405043.CrossRefGoogle ScholarPubMed
Hu, Y., Ecke, R. E. & Ahlers, G. 1997 Convection under rotation for Prandtl numbers near 1: linear stability, wave-number selection and pattern dynamics. Phys. Rev. E 55, 69286949.CrossRefGoogle Scholar
Knobloch, E. 1998 Rotating convection: recent developments. Intl J. Engng Sci. 36, 14211450.CrossRefGoogle Scholar
Küppers, G. & Lortz, D. 1969 Transition from laminar convection to thermal turbulence in a rotating fluid layer. J. Fluid Mech. 35, 609620.CrossRefGoogle Scholar
Marques, F. & Lopez, J. M. 2008 Influence of wall modes on the onset of bulk convection in a rotating cylinder. Phys. Fluids 20 024109.CrossRefGoogle Scholar
Marques, F., Mercader, I., Batiste, O. & Lopez, J. M. 2007 Centrifugal effects in rotating convection: axisymmetric states and three-dimensional instabilities. J. Fluid Mech. 580, 303318.CrossRefGoogle Scholar
Paul, M. R., Cross, M. C & Fischer, P. F. 2002 Rayleigh–Bénard convection with a radial ramp in plate separation. Phys. Rev. E 66, 046210.CrossRefGoogle ScholarPubMed
Rubio, A, Lopez, J. M. & Marques, F. 2010 Onset of Kuppers–Lortz-like dynamics in finite rotating thermal convection. J. Fluid Mech. 644, 337357.CrossRefGoogle Scholar
Sánchez-Álvarez, J. J., Serre, E., Crespo del Arco, E. & Busse, F. H. 2005 Square patterns in rotating Rayleigh–Bénard convection. Phys. Rev. E 72, 036307.CrossRefGoogle ScholarPubMed
Scheel, J. 2006 Rotating Rayleigh–Bénard convection. PhD thesis, California Institute of Technology.CrossRefGoogle Scholar
Scheel, J. D. 2007 The amplitude equation for rotating Rayleigh–Bénard convection. Phys. Fluids 19, 104105.CrossRefGoogle Scholar
Scheel, J. D. & Cross, M. C. 2005 Scaling laws for rotating Rayleigh–Bénard convection. Phys. Rev. E 72, 056315.CrossRefGoogle ScholarPubMed
Scheel, J. D., Paul, M. R., Cross, M. C. & Fischer, P. F. 2003 Traveling waves in rotating Rayleigh–Bénard convection: analysis of modes and mean flow. Phys. Rev. E 68, 066216.CrossRefGoogle ScholarPubMed
Schlüter, A., Lortz, D. & Busse, F. 1965 On the stability of steady finite amplitude convection. J. Fluid Mech. 23, 129144.CrossRefGoogle Scholar
Tu, Y. & Cross, M C. 1992 Chaotic domain structure in rotating convection. Phys. Rev. Lett. 69, 25152518.CrossRefGoogle ScholarPubMed
Zhan, X., Liao, X., Zhu, R. & Zhang, K. 2009 Convection in rotating annular channels heated from below. Part 3. Experimental boundary conditions. Geophys. Astrophys. Fluid Dynamics 103, 443.CrossRefGoogle Scholar
Zhang, K. & Liao, X 2008 The onset of convection in rotating circular cylinders with experimental boundary conditions. J. Fluid Mech. 622, 63.CrossRefGoogle Scholar