Skip to main content Accessibility help
×
Home

Particle segregation in falling polydisperse suspension droplets

  • Melissa Faletra (a1), Jeffrey S. Marshall (a1), Mengmeng Yang (a2) and Shuiqing Li (a2)

Abstract

The problem of a suspension droplet falling under gravity was examined for polydisperse droplets composed of a mixture of particles with different densities and sizes. The study was conducted using both simulations based on oseenlet particle interactions and laboratory experiments. The hydrodynamic interactions of the particles within the suspension droplet allow a polydisperse collection of particles to fall as a coherent droplet, even for cases where the difference in particle terminal velocity would cause them to separate quickly from each other in the absence of hydrodynamic interactions. However, a gradual segregation phenomenon is observed in which particles with lower terminal velocity preferentially leave the suspension droplet by entering into the droplet tail, whereas particles with higher terminal velocity remain for longer periods of time within the droplet. When computations and experiments are performed for bidisperse mixtures, a point is eventually reached where all of the lighter/smaller particles are ejected into the droplet tail and the droplet continues to fall with only the heavier/larger particles.

Copyright

Corresponding author

Email address for correspondence: jmarsha1@uvm.edu

References

Hide All
Abade, G. C. & Cunha, F. R. 2007 Computer simulation of particle aggregates during sedimentation. Comput. Meth. Appl. Mech. Engng 196, 45974612.
Adachi, K., Kiriyama, S. & Yoshioka, N. 1978 The behavior of a swarm of particles moving in a viscous fluid. Chem. Engng Sci. 33 (1), 115121.
Asmar, B. N., Langston, P. A. & Matchett, A. J. 2002 A generalised mixing index in distinct element method simulation of vibrated particulate beds. Granul. Matt. 4, 129138.
Bosse, T., Kleiser, L., Härtel, C. & Meiburg, E. 2005 Numerical simulation of finite Reynolds number suspension drops settling under gravity. Phys. Fluids 17, 037101.
Bretherton, F. P. 1964 Inertial effects on clusters of spheres falling in a viscous fluid. J. Fluid Mech. 20 (1), 401410.
Bülow, F., Nirschl, H. & Dörfler, W. 2015 On the settling behavior of polydisperse particle clouds in viscous fluids. Eur. J. Mech. (B/Fluids) 50, 1926.
Chen, H. & Marshall, J. S. 1999 A Lagrangian vorticity method for two-phase particulate flows with two-way phase coupling. J. Comput. Phys. 148, 169198.
Cundall, P. A. & Strack, O. D. L. 1979 A discrete numerical model for granular assembles. Geotechnique 29 (1), 4765.
Ekiel-Jeżewska, M. L. & Felderhof, B. U. 2005 Periodic sedimentation of three particles in periodic boundary conditions. Phys. Fluids 17, 093102.
Ekiel-Jeżewska, M. L. & Felderhof, B. U. 2006 Clusters of particles falling in a viscous fluid with periodic boundary conditions. Phys. Fluids 18, 121502.
Ekiel-Jeżewska, M. L., Metzger, B. & Guazzelli, É. 2006 Spherical cloud of point particles falling in a viscous fluid. Phys. Fluids 18, 038104.
Elghobashi, S. & Truesdell, G. C. 1993 On the two-way interaction between homogeneous turbulence and dispersed solid particles. I: Turbulence modification. Phys. Fluids A 5, 17901801.
Faletra, M.2014 Segregation of particles of variable size and density in falling suspension droplets. M.S. Thesis, University of Vermont, Burlington.
Hadamard, J. 1911 Mouvement permanent lent d’une sphère liquide visqueuse dans un liquid visqueux. C. R. Acad. Sci. Paris Sér. A–B 152, 17351739.
Hertz, H. 1882 Über die Berührung fester elastische Körper. J. Reine Angew. Math. 92, 156171.
Hocking, L. M. 1964 The behaviour of clusters of spheres falling in a viscous fluid. Part 2. Slow motion theory. J. Fluid Mech. 20, 129139.
Hurley, P. & Physick, W. 1993 Lagrangian particle modelling of buoyant point sources: plume rise and entrapment under convective conditions. Atmos. Environ. A 27 (10), 15791584.
Jain, N., Ottino, J. M. & Lueptow, R. M. 2005 Regimes of segregation and mixing in combined size and density granular systems: an experimental study. Granul. Matt. 7, 6981.
Jayaweera, K. O. L. F., Mason, B. J. & Slack, G. W. 1964 The behaviour of clusters of spheres falling in a viscous fluid. Part 1. Experiment. J. Fluid Mech. 20 (1), 121128.
Joseph, G. G., Zenit, R., Hunt, M. L. & Rosenwinkel, A. M. 2001 Particle–wall collisions in a viscous fluid. J. Fluid Mech. 433, 329346.
Kojima, M., Hinch, E. J. & Acrivos, A. 1984 The formation and expansion of a toroidal drop moving in a viscous fluid. Phys. Fluids 27 (1), 1932.
Li, H. & McCarthy, J. J. 2005 Phase diagrams for cohesive particle mixing and segregation. Phys. Rev. E 71, 021305.
Machu, G., Meile, W., Nitsche, L. C. & Schaflinger, U. 2001 Coalescence, torus formation and breakup of sedimenting drops: experiments and computer simulations. J. Fluid Mech. 447, 299336.
Marshall, J. S. 2009 Discrete-element modeling of particulate aerosol flows. J. Comput. Phys. 228, 15411561.
Marshall, J. S. & Sala, K. 2013 Comparison of methods for computing the concentration field of a particulate flow. Intl J. Multiphase Flow 56, 414.
Martonen, T. B. 1992 Deposition patterns of cigarette-smoke in human airways. Am. Indust. Hyg. Assoc. J. 53, 618.
Metzger, B., Nicolas, M. & Guazzelli, É. 2007 Falling clouds of particles in viscous fluids. J. Fluid Mech. 580, 283301.
Nitsche, J. M. & Batchelor, G. K. 1997 Break-up of a falling drop containing dispersed particles. J. Fluid Mech. 340, 161175.
Noh, Y. & Fernando, H. J. S. 1993 The transition in the sedimentation pattern of a particle cloud. Phys. Fluids A 5 (12), 30493055.
Park, J., Metzger, B., Guazzelli, É. & Butler, J. E. 2010 A cloud of rigid fibres sedimenting in a viscous fluid. J. Fluid Mech. 648, 351362.
Phalen, R. F., Oldham, M. J., Mannix, R. C. & Schum, G. M. 1994 Cigarette-smoke deposition in the tracheobronchial tree – evidence for colligative effects. Aerosol Sci. Technol. 20, 215226.
Pignatel, F., Nicolas, M. & Guazzelli, É. 2011 A falling cloud of particles at a small but finite Reynolds number. J. Fluid Mech. 671, 3451.
Proudman, I. & Pearson, J. R. A. 1957 Expansions at small Reynolds numbers for the flow past a sphere and a circular cylinder. J. Fluid Mech. 2 (3), 237262.
Robinson, R. J. & Yu, C. P. 2001 Deposition of cigarette smoke particles in the human respiratory tract. Aerosol Sci. Technol. 34, 202215.
Rybczyński, W. 1911 Über die fortschreitende Bewegung einer flüssigen Kugel in einem zähen Medium. Bull. Intl Acad. Sci. Crac. 1911A, 4046.
Shinohara, K. & Golman, B. 2002 Segregation indices of multi-sized particle mixtures during the filling of a two-dimensional hopper. Adv. Powder Technol. 13 (1), 93107.
Subramanian, G. & Koch, D. L. 2008 Evolution of clusters of sedimenting low-Reynolds-number particles with Oseen interactions. J. Fluid Mech. 603, 63100.
Tsuji, Y., Tanaka, T. & Ishida, T. 1992 Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol. 71, 239250.
Vasseur, P. & Cox, R. G. 1977 The lateral migration of spherical particles sedimenting in a stagnant bounded fluid. J. Fluid Mech. 80 (3), 561591.
Walther, J. H. & Koumoutsakos, P. 2001 Three-dimensional vortex methods for particle-laden flows with two-way coupling. J. Comput. Phys. 167, 3971.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed