## References

Adrian, R. J.
2007
Hairpin vortex organization in wall turbulence. Phys. Fluids
10, 1â16.

Adrian, R. J., Christensen, K. T.Â & Liu, Z.-C.
2000a
Analysis and interpretation of instantaneous velocity fields. Exp. Fluids
29 (3), 275â290.

Adrian, R. J.Â & Marusic, I.
2012
Coherent structures in flow over hydraulic engineering surfaces. J. Hydraul. Res.
50 (5), 451â464.

Adrian, R. J., Meinhart, C. D.Â & Tomkins, C. D.
2000b
Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech.
422, 1â54.

Ahn, J., Lee, J. H., Jang, S. J.Â & Sung, H. J.
2013
Direct numerical simulation of fully developed turbulent pipe flows for *Re*
_{đ} = 180, 544 and 934. Intl J. Heat Fluid Flow
44, 222â228.

Bailey, S. C. C.Â & Smits, A. J.
2010
Experimental investigation of the structure of large- and very-large-scale motions in turbulent pipe flow. J. Fluid Mech.
651, 339â356.

Balakumar, B. J.Â & Adrian, R. J.
2007
Large and very-large-scale motions in channel and boundary-layer flows. Phil. Trans. R. Soc. Lond.Â A
365, 665â681.

Baltzer, J. R., Adrian, R. J.Â & Wu, X.
2013
Structural organization of large and very large scales in turbulent pipe flow simulation. J. Fluid Mech.
720, 236â279.

Bandyopadhyay, P. R.
1980
Large structure with a characteristic upstream interface in turbulent boundary layers. Phys. Fluids
23 (11), 2326â2327.

Banerjee, S.
1994
Upwellings, downdrafts and whirlpools: dominant structures in free surface turbulence. Appl. Mech. Rev.
47 (6), 166â172.

Barkley, D.
2016
Theoretical perspective on the route to turbulence in a pipe. J. Fluid Mech.
803, 1â80.

Brown, G. L.Â & Thomas, A. S. W.
1977
Large structure in a turbulent boundary layer. Phys. Fluids
20 (10), 243â252.

Chin, C., Ng, H. C.-H., Blackburn, H. M., Monty, J. P.Â & Ooi, A.
2015
Turbulent pipe flow at *Re*
_{đ} = 1000: a comparison of wall-resolved large-eddy simulation, direct numerical simulation and hot-wire experiment. Comput. Fluids
122, 26â33.

Chin, C. C., Ooi, A. S. H., Marusic, I.Â & Blackburn, H. M.
2010
The influence of pipe length on turbulence statistics computed from direct numerical simulation data. Phys. Fluids
22 (11), 115107.

Christensen, K. T.Â & Adrian, R. J.
2001
Statistical evidence of hairpin vortex packets in wall turbulence. J. Fluid Mech.
431, 433â443.

Clark, S. P.Â & Kehler, N.
2011
Turbulent flow characteristics in circular corrugated culverts at mild slopes. J. Hydraul. Res.
49 (5), 676â684.

Clausnitzer, B.Â & Hager, W. H.
1997
Outflow characteristics from circular pipe. ASCE J. Hydraul. Engng
123 (10), 914â917.

Davis, A. M. J.Â & Mai, T. Z.
1991
Steady pressure-driven non-Newtonian flow in a partially filled pipe. J. Non-Newtonian Fluid Mech.
41, 81â100.

Demuren, A. O.Â & Rodi, W.
1984
Calculation of turbulence-driven secondary motion in non-circular ducts. J. Fluid Mech.
140, 189â222.

Dennis, D. J. C.
2015
Coherent structures in wall-bounded turbulence. An. Acad. Bras. CiĂȘnc.
87 (2), 1161â1193.

Dennis, D. J. C.Â & Nickels, T. B.
2008
On the limitations of Taylorâs hypothesis in constructing long structures in a turbulent boundary layer. J. Fluid Mech.
614, 197â206.

Dennis, D. J. C.Â & Nickels, T. B.
2011a
Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 1. Vortex packets. J. Fluid Mech.
673, 180â217.

Dennis, D. J. C.Â & Nickels, T. B.
2011b
Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 2. Long structures. J. Fluid Mech.
673, 218â244.

Dennis, D. J. C.Â & Sogaro, F. M.
2014
Distinct organizational states of fully developed turbulent pipe flow. Phys. Rev. Lett.
113, 234501.

van Doorne, C. W. H.Â & Westerweel, J.
2007
Measurement of laminar, transitional and turbulent pipe flow using Stereoscopic-PIV. Exp. Fluids
42, 259â279.

Durst, F., Jovanovic, J.Â & Sender, J.
1995
LDA measurements in the near-wall region of a turbulent pipe flow. J. Fluid Mech.
295, 305â335.

Ead, S. A., Rajaratnam, N., Katopodis, C.Â & Ade, F.
2000
Turbulent open-channel flow in circular corrugated culverts. ASCE J. Hydraul. Engng
126 (10), 750â757.

El Khoury, G. K., Schlatter, P., Noorani, A., Fischer, P. F., Brethouwer, G.Â & Johansson, A. V.
2013
Direct numerical simulation of turbulent pipe flow at moderately high Reynolds numbers. Flow Turbul. Combust.
91, 475â495.

Enfinger, K. L.Â & Kimborough, H. R.
2004
Scattergraph principles and practice: A comparison of various applications of the Manning equation. In Proceedings of the ASCE Pipeline Division Specialty Congress, pp. 1â13. American Society of Civil Engineers.

Enfinger, K. L.Â & Schutzbach, J. S.
2005
Scattergraph principles and practice: Campâs varying roughness coefficient applied to regressive methods. In Proceedings of the ASCE Pipeline Division Specialty Conference, pp. 72â83. American Society of Civil Engineers.

Escudier, M. P., Presti, F.Â & Smith, S.
1999
Drag reduction in the turbulent pipe flow of polymers. J. Non-Newtonian Fluid Mech.
81, 197â213.

French, R. H.
1985
Open-Channel Hydraulics. McGraw-Hill.

Fullard, L. A.Â & Wake, G. C.
2015
An analytical series solution to the steady laminar flow of a Newtonian fluid in a prtially filled pipe, including the velocity distribution and the dip phenomenon. IMA J. Appl. Maths
80 (6), 1890â1901.

Ganapathisubramani, B., Longmire, E. K.Â & Marusic, I.
2003
Characteristics of vortex packets in turbulent boundary layers. J. Fluid Mech.
478, 35â46.

Gessner, F. B.Â & Jones, J. B.
1965
On some aspects of fully developed turbulent flow in a rectangular channel. J. Fluid Mech.
23, 689â713.

Guala, M., Hommema, S. E.Â & Adrian, R. J.
2006
Large-scale and very-large-scale motions in turbulent pipe flow. J. Fluid Mech.
554, 521â542.

Guo, J.Â & Meroney, R. N.
2013
Theoretical solution for laminar flow in partially-filled pipes. J. Hydraul. Res.
51 (4), 408â416.

Hagen, G.
1839
Ăber die bewegung des wassers in engen zylinerschen rohren. Poggendorffâs Ann. Phys. Chem.
46, 423â442.

Hultmark, M., Bailey, S. C. C.Â & Smits, A. J.
2010
Scaling of near-wall turbulence intensity. J. Fluid Mech.
649, 103â113.

Hutchins, N., Hambleton, W. T.Â & Marusic, I.
2005
Inclined cross-stream stereo particle image velocimetry measurements in turbulent boundary layers. J. Fluid Mech.
541, 21â54.

Hutchins, N.Â & Marusic, I.
2007
Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech.
579, 1â28.

Izakson, A.
1937
On the formula for the velocity distribution near walls. Tech. Phys. USSR IV
IV (2), 155.

Johnston, J. P.
1978
Internal Flows. pp. 109â169. Springer.

Khalifa, M. M. A.Â & Trupp, A. C.
1988
Measurements of fully developed turbulent flow in a trapezoidal duct. Exp. Fluids
6, 344â352.

Kim, K. C.Â & Adrian, R. J.
1999
Very large-scale motion in the outer layer. Phys. Fluids
11 (2), 417â422.

Knight, D. W.Â & Sterling, M.
2000
Boundary shear in circular pipes running partially full. ASCE J. Hydraul. Engng
126 (4), 263â275.

Komori, S., Nagaosa, P., Murakami, Y., Chiba, S., Ishii, K.Â & Kuwahara, K.
1993
Direct numerical simulation of three-dimensional open-channel flow with zero-shear gasâliquid interface. Phys. FluidsÂ A
5 (1), 115â125.

Krishnakumar, C. K.Â & Fields, S. F.
1982
Criteria of filling of liquid carrying pipes. J. Fluid Engng
104, 451â454.

Kumar, S., Gupta, R.Â & Banerjee, S.
1998
An experimental investigation of the characteristics of free-surface turbulence in channel flow. Phys. Fluids
10 (2), 437â455.

Lawn, C. J.
1971
The determination of the rate of dissipation in turbulent pipe flow. J. Fluid Mech.
48, 477â505.

Lee, J., Ahn, J.Â & Sung, H. J.
2015
Comparison of large- and very-large-scale motions in turbulent pipe and channel flows. Phys. Fluids
27 (2), 025101.

Lee, J. H.Â & Sung, H. J.
2014
Comparison of very-large-scale motions of turbulent pipe and boundary layer simulations. Phys. Fluids
25, 045103.

Millikan, C. B.
1938
A critical discussion of turbulent flows in channels and circular tubes. In Proceedings of the 5th International Congress on Applied Mechanics, pp. 386â392. Wiley.

Monty, J. P., Hutchins, N., Ng, H. C. H., Marusic, I.Â & Chong, M. S.
2009
A comparison of turbulent pipe, channel and boundary layer flows. J. Fluid Mech.
632, 431â442.

Monty, J. P., Stewart, J. A., Williams, R. C.Â & Chong, M. S.
2007
Large-scale features in turbulent pipe and channel flows. J. Fluid Mech.
589, 147â156.

Nezu, I.
2005
Open-channel flow turbulence and its research prospect in the 21st century. ASCE J. Hydraul. Engng
131 (4), 229â246.

Nezu, I.Â & Nakayama, T.
1997
Spaceâtime correlation structures of horizontal coherent vortices in compound open-channel flows by using particle-tracking velocimetry. J. Hydraul. Res.
35 (2), 191â208.

Nezu, I.Â & Sanjou, M.
2011
PIV and PTV measurements in hydro-sciences with focus on turbulent open-channel flows. J. Hydro-Environ. Res.
5, 215â230.

Ng, H. C.-H., Monty, J. P., Hutchins, N., Chong, M. S.Â & Marusic, I.
2011
Comparison of turbulent channel and pipe flows with varying Reynolds number. Exp. Fluids
51, 1261â1281.

Ng, T. S., Lawrence, C. J.Â & Hewitt, G. F.
2000
Gravity-driven laminar flow in a partially-filled pipe. ASCE J. Hydraul. Engng
126 (4), 263â275.

Onitsuka, K.Â & Nezu, I.
2001
Generation mechanism of turbulence-driven secondary currents in open-channel flows. In IUTAM Symposium on Geometry and Statistics of Turbulence (ed. Kambe, K.
et al. ), pp. 345â350. Kluwer.

ĂrlĂŒ, R.Â & Alfredsson, P. H.
2013
Comment on the scaling of the near-wall streamwise variance peak in turbulent pipe flows. Exp. Fluids
54, 1431.

Owolabi, B. E., Poole, R. J.Â & Dennis, D. J. C.
2016
Experiments on low-Reynolds-number turbulent flow through a square duct. J. Fluid Mech.
798, 398â410.

Pan, Y.Â & Banerjee, S.
1995
A numerical study of free-surface turbulence in channel flow. Phys. Fluids
7 (7), 1649â1664.

Perkins, H. J.
1970
The formation of streamwise vorticity in turbulent flow. J. Fluid Mech.
44, 721â740.

Perry, A. E.Â & Abell, C. J.
1975
Scaling laws for pipe-flow turbulence. J. Fluid Mech.
67, 257â271.

Poiseuille, J. L. M.
1840
Recherches expĂ©rimentelles sur le mouvement des liquids dans les tubes de trĂ©s petits diamĂ©tres. C.R. Hebd. Seances Acad. Sci.
11, 961â967; 1041â1048.

Pope, S. B.
2000
Turbulent Flows. Cambridge University Press.

Prandtl, L.
1952
Essentials of Fluid Dynamics. Blackie.

Raffel, M., Willert, C., Wereley, S.Â & Kompenhans, J.
2007
Particle Image Velocimetry, 2nd edn. Springer.

Rashidi, M.
1997
Burst-interface interactions in free surface turbulent flows. Phys. Fluids
9 (11), 3485â3501.

Reynolds, O.
1895
On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Phil. Trans. R. Soc. Lond. A
4, 123â164.

Sillero, J. A., Jimenez, J.Â & Moser, R. D.
2013
One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to đż^{+} = 2000. Phys. Fluids
25, 105102.

Stephenson, D. G.
1957
Fluid friction in partially filled circular conduits. Trans. Engng Inst. Can.
1 (44), 1â5.

Sterling, M.Â & Knight, D. W.
2000
Resistance and boundary shear in circular conduits with flat beds running part full. Proc. Inst. Civ. Engrs
142 (4), 229â240.

Swaffield, J. A.Â & Bridge, S.
1983
Applicability of the ColebrookâWhite formula to represent frictional losses in partially filled unsteady pipe flow. J. Res. Natl Bur. Stand.
88 (6), 389â393.

Tamburrino, A.Â & Gulliver, J. S.
1999
Large scale structures in a turbulent open channel flow. J. Hydraul. Res.
37 (3), 363â380.

Taylor, G. I.
1938
The spectrum of turbulence. Proc. R. Soc. Lond. A
164, 476â490.

Tominaga, A., Nezu, I., Ezaki, K.Â & Nakagawa, H.
1989
Three-dimensional turbulent structure in straight open channel flows. J. Hydraul. Res.
27 (1), 149â173.

den Toonder, J. M. J.Â & Nieuwstadt, F. T. M.
1997
Reynolds number effects in a turbulent pipe flow for low to moderate Re. Phys. Fluids
9 (11), 3398â3409.

Tsai, W.-T.
1998
A numerical study of the evolution and structure of a turbulent shear layer under a free surface. J. Fluid Mech.
354, 239â276.

Wark, C. E.Â & Nagib, H. M.
1991
Experimental investigation of coherent structures in turbulent boundary layers. J. Fluid Mech.
230, 183â208.

White, F. M.
2006
Viscous Fluid Flow, 3rd edn. McGraw-Hill.

White, F. M.
2008
Fluid Mechanics, 6th edn. McGraw-Hill.

Wu, X., Baltzer, J. R.Â & Adrian, R. J.
2012
Direct simulation of a 30*R* long turbulent pipe flow at *R*
^{+} = 685: large- and very large-scale motions. J. Fluid Mech.
698, 235â281.

Wu, X.Â & Moin, P.
2008
A direct numerical simulation study on the mean velocity characteristics in turbulent pipe flow. J. Fluid Mech.
608, 81â112.

Yoon, J. I., Sung, J.Â & Lee, M. H.
2012
Velocity profiles and friction factor coefficients in circular open channels. J. Hydraul. Res.
50 (3), 304â311.

Zhou, J., Adrian, R. J., Balachandar, S.Â & Kendall, T. M.
1999
Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech.
387, 353â396.