Skip to main content Accessibility help
×
Home

Parametric study and scaling of jet manipulation using an unsteady minijet

  • A. K. Perumal (a1) and Y. Zhou (a1) (a2)

Abstract

A parametric study is conducted for the control of a turbulent jet using a single unsteady minijet. A number of control parameters that influence the decay rate $K$ of the jet centreline mean velocity are investigated, including the mass flow rate ratio $C_{m}$ , excitation frequency ratio $f_{e}/f_{0}$ and exit diameter ratio $d/D$ of the minijet to main jet, along with the duty cycle ( $\unicode[STIX]{x1D6FC}$ ) of the minijet injection. Extensive hot-wire, particle image velocimetry and flow visualization measurements were performed in the manipulated jet. Various flow structures have been identified, such as the flapping flow, non-flapping flow and that showing a manipulable thrust vector, depending on $C_{m}$ , $f_{e}/f_{0}$ and $\unicode[STIX]{x1D6FC}$ . Empirical scaling analysis unveils that, prior to the minijet impingement upon the wall of the nozzle and the generation of turbulence, the relationship $K=g_{1}$ ( $C_{m}$ , $f_{e}/f_{0}$ , $d/D$ , $\unicode[STIX]{x1D6FC}$ ) may be reduced to $K=g_{2}$ ( $\unicode[STIX]{x1D709}$ ), where $g_{1}$ and $g_{2}$ are different functions and the scaling factor $\unicode[STIX]{x1D709}=(\sqrt{MR}/\unicode[STIX]{x1D6FC})(d/D)^{n}$ ( $\sqrt{MR}\equiv C_{m}(D/d)$ is the momentum ratio and $n$ is a constant that depends on $\unicode[STIX]{x1D6FC}$ ) is physically the effective momentum ratio per pulse or effective penetration depth. Discussion is conducted based on $K=g_{2}$ ( $\unicode[STIX]{x1D709}$ ), which provides important insight into the jet control physics.

Copyright

Corresponding author

Email address for correspondence: yuzhou@hit.edu.cn

References

Hide All
Alkislar, M. B., Krothapalli, A. & Butler, G. 2007 The effect of streamwise vortices on the aeroacoustics of a Mach 0.9 jet. J. Fluid Mech. 578, 139169.
Ball, C. G., Fellouah, H. & Pollard, A. 2012 The flow field in turbulent round free jets. Prog. Aerosp. Sci. 50, 126.
Behrouzi, P., Feng, T. & McGuirk, J. J. 2008 Active flow control of jet mixing using steady and pulsed fluid tabs. Proc. Inst. Mech. Engrs 222, 381392.
Bradbury, L. J. S. & Khadem, A. H. 1975 The distortion of a jet by tabs. J. Fluid Mech. 70, 801813.
Breidenthal, R. E., Tong, K. O., Wong, G. S., Hamerquist, R. D. & Landry, P. B. 1985 Turbulent mixing in two-dimensional ducts with transverse jets. AIAA J. 21 (11), 18671869.
Brown, G. L. & Roshko, A. 1974 On density effects and large scale structures in turbulent mixing layers. J. Fluid Mech. 64, 775816.
Bons, J. P., Sondergaard, R. & Rivir, R. B. 2001 The fluid dynamics of LPT blade separation control using pulsed jets. J. Turbomach. 124 (1), 7785.
Cattafesta, L. N. III & Sheplak, M. 2011 Actuators for active flow control. Annu. Rev. Fluid Mech. 43, 247272.
Chauvet, N., Deck, S. & Jacquin, L. 2007 Numerical study of mixing enhancement in a supersonic round jet. AIAA J. 45, 16751687.
Chue, S. H. 1975 Pressure probes for fluid measurement. Prog. Aerosp. Sci. 16, 147223.
Coussement, A., Gicquel, O. & Degrez, G. 2012 Large Eddy simulation of pulsed jet in cross flow. J. Fluid Mech. 695, 134.
Crow, S. C. & Champagne, F. H. 1971 Orderly structure in jet turbulence. J. Fluid Mech. 48, 547591.
Davis, M. 1982 Variable control of jet decay. AIAA J. 20, 606609.
Edwards, A. C., Sherman, W. D. & Breidenthal, R. E. 1985 Turbulent mixing in tubes with transverse injection. AIChE J. 31, 516518.
Eroglu, A. & Breidenthal, R. E. 2001 Structure, penetration, and mixing of pulsed jets in crossflow. AIAA J. 39, 417423.
Fan, D. W., Wu, Z., Yang, H., Li, J. D. & Zhou, Y. 2017 A modified extremum seeking closed-loop system for jet mixing enhancement. AIAA J. 55, 38913902.
Freund, J. B. & Moin, P. 2000 Jet mixing enhancement by high-amplitude fluidic actuation. AIAA J. 38, 18631870.
Gutmark, E. & Grinstein, F. 1999 Flow control with noncircular jets. Annu. Rev. Fluid Mech. 31, 239272.
Gutmark, E. & Ho, C. M. 1983 Preferred modes and the spreading rates of jets. Phys. Fluids 26, 29322938.
Hermanson, J. C., Wahba, A. & Johari, H. 1998 Duty-cycle effects on penetration of fully modulated, turbulent jets in crossflow. AIAA J. 36, 19351937.
Ho, C. M. & Huang, L. S. 1982 Subharmonics and vortex merging in mixing layers. J. Fluid Mech. 119, 443473.
Huang, H., Dabiri, D. & Gharib, M. 1997 On errors of digital particle image velocimetry. Meas. Sci. Technol. 8, 14271440.
Huang, J. F., Zhou, Y. & Zhou, T. M. 2006 Three-dimensional wake structure measurement using a modified PIV technique. Exp. Fluids 40, 884896.
Huang, J. M. & Hsiao, F. B. 1999 On the mode development in the developing region of a plane jet. Phys. Fluids 11, 18471857.
Hussain, A. K. M. F. 1986 Coherent structures and turbulence. J. Fluid Mech. 173, 303356.
Husain, H. S & Hussain, A. K. M. F. 1983 Controlled excitation of elliptic jets. Phys. Fluids 26, 27632766.
Ibrahim, M. K., Kunimura, R. & Nakamura, Y. 2002 Mixing enhancement of compressible jets by using unsteady microjets as actuators. AIAA J. 40, 681688.
Iio, S., Hirashita, K., Katayama, Y., Haneda, Y., Ikeda, T. & Uchiyama, T. 2013 Jet flapping control with acoustic excitation. J. Flow Control Meas. Vis. 1, 4956.
Johari, H. 2006 Scaling of fully pulsed jets in crossflow. AIAA J. 44, 27192725.
Johari, H., Pacheco-Tougas, M. & Hermanson, J. 1999 Penetration and mixing of fully modulated turbulent jets in crossflow. AIAA J. 37, 842850.
Kamran, M. A. & McGuirk, J. J. 2011 Subsonic jet mixing via active control using steady and pulsed control jets. AIAA J. 49, 712724.
Karagozian, A. R. 2014 The jet in crossflow. Phys. Fluids 26, 147.
Knowles, K. & Saddington, A. J. 2006 A review of jet mixing enhancement for aircraft propulsion applications. Proc. Inst. Mech. Engrs 220, 103127.
Kumar, A. P., Verma, S. B. & Rathakrishnan, E. 2015 Experimental study of subsonic and sonic jets controlled by air tabs. J. Propul. Power 31, 14731481.
Lardeau, S., Lamballais, É. & Bonnet, J. P. 2002 Direct numerical simulation of a jet controlled by fluid injection. J. Turbul. 3, N2.
Malmstrom, T. G., Kirkpatrick, A. T., Christensen, B. & Knappmiller, K. D. 1997 Centreline velocity decay measurements in low-velocity axisymmetric jets. J. Fluid Mech. 346, 363377.
M’Closkey, R. T., King, J. M., Cortelezzi, L. & Karagozian, A. R. 2002 The actively controlled jet in crossflow. J. Fluid Mech. 452, 325335.
Melling, A. 1997 Tracer particles and seeding for particle image velocimetry. Meas. Sci. Technol. 8, 1406.
Namer, I. & Otugen, M. V. 1988 Velocity measurements in a plane turbulent air jet at moderate Reynolds numbers. Exp. Fluids 6, 387399.
New, T. H., Lim, T. T. & Luo, S. C. 2006 Effects of jet velocity profiles on a round jet in cross-flow. Exp. Fluids 40, 859875.
New, T. H. & Tay, W. L.2004. Effects of circumferential microjets on the near-field behavior of a round jet. AIAA Paper 2004-092.
Pack, L. G. & Seifert, A. 2001 Periodic excitation for jet vectoring and enhanced spreading. J. Aircraft 38, 486495.
Parekh, D., Kibens, V., Glezer, A., Wiltse, J. & Smith, D.1996 Innovative jet flow control: mixing enhancement experiments. AIAA paper 96-0308.
Pattenden, R. J., Turnock, S. R. & Zhang, X. 2005 Measurements of the flow over a low-aspect-ratio cylinder mounted on a ground plane. Exp. Fluids 39, 1021.
Raman, G. 1997 Using controlled unsteady fluid mass addition to enhance jet mixing. AIAA J. 35, 647656.
Raman, G. & Cornelius, D. 1995 Jet mixing control using excitation from miniature oscillating jets. AIAA J. 33, 365368.
Raman, G., Hailye, M. & Rice, E. J. 1993 Flip–flop jet nozzle extended to supersonic flows. AIAA J. 31, 10281035.
Roshko, A. 1976 Structure of turbulent shear flows: a new look. AIAA J. 14, 13491357.
Sailor, D. J., Rohli, D. J. & Fu, Q. 1999 Effect of variable duty cycle flow pulsations on heat transfer enhancement for an impinging air jet. Intl J. Heat Fluid Flow 20, 574580.
Samimy, M., Kim, J.-H., Kastner, J., Adamovich, I. & Utkin, Y. 2007 Active control of high-speed and high-Reynolds-number jets using plasma actuators. J. Fluid Mech. 578, 305330.
Sau, R. & Mahesh, K. 2010 Optimization of pulsed jet in crossflow. J. Fluid Mech. 653, 365390.
Seidel, J. F., Pappart, C., New, T. H. & Tsai, H. M.2005 Effects of multiple radial blowing around a circular jet. AIAA Paper 2005-866.
Seifert, A., Darabi, A. & Wyganski, I. 1996 Delay of airfoil stall by periodic excitation. J. Aircraft 33, 691698.
Shapiro, A. H. 1953 The Dynamics and Thermodynamics of Compressible Fluid Flow, vol. 1. Ronald Press.
Tamburello, D. A. & Amitay, M. 2007 Three-dimensional interactions of a free jet with a perpendicular synthetic jet. J. Turbul. 8, 121.
Vlasov, Ye. V. & Ginevskiy, A. S.1974 Generation and suppression of turbulence in an axisymmetric turbulent jet in the presence of an acoustic influence. Tech. Rep. TT F-15, 721. NASA.
Wan, C. & Yu, S. C. M. 2013 Numerical investigation of the air tabs technique in jet flow. J. Propul. Power 29, 4249.
Wiltse, J. M. & Glezer, A. 1993 Manipulation of free shear flows using piezoelectric actuators. J. Fluid Mech. 249, 261285.
Wickersham, P.2007 Jet mixing enhancement by high amplitude pulse-fluidic actuator. PhD thesis, Georgia Institute of Technology.
Yang, H.2017 Study of active jet control using unsteady minijets. PhD thesis, Harbin Institute of Technology Shenzhen Graduate School.
Yang, H. & Zhou, Y. 2016 Axisymmetric jet manipulated using two unsteady minijets. J. Fluid Mech. 808, 362396.
Yang, H., Zhou, Y., So, R. M. C. & Liu, Y. 2016 Turbulent jet manipulation using two unsteady azimuthally separated radial minijets. Proc. R. Soc. Lond. A 472, 20160417.
Yu, S., Lim, K., Chao, W. & Goh, X. 2008 Mixing enhancement in subsonic jet flow using the air-tab technique. AIAA J. 46, 29662969.
Zaman, K. B. M. Q., Bridges, J. E. & Huff, D. L. 2011 Evolution from ‘tabs’ to ‘chevron technology’ – a review. Intl J. Aeroacoust. 10, 685709.
Zaman, K. B. M. Q. & Hussain, A. K. M. F. 1981 Turbulence suppression in free shear flows by controlled excitation. J. Fluid Mech. 103, 133159.
Zhou, Y., Du, C., Mi, J. & Wang, X. 2012 Turbulent round jet control using two steady minijets. AIAA J. 50, 736740.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed