Skip to main content Accessibility help

Oscillatory flow regimes around four cylinders in a square arrangement under small $\mathit{KC}$ and $\mathit{Re}$ conditions

  • Feifei Tong (a1), Liang Cheng (a1) (a2), Ming Zhao (a3) and Hongwei An (a1)


Sinusoidally oscillatory flow around four circular cylinders in an in-line square arrangement is numerically investigated at Keulegan–Carpenter numbers ( $\mathit{KC}$ ) ranging from 1 to 12 and at Reynolds numbers ( $\mathit{Re}$ ) from 20 to 200. A set of flow patterns is observed and classified based on known oscillatory flow regimes around a single cylinder. These include six types of reflection symmetry regimes to the axis of flow oscillation, two types of spatio-temporal symmetry regimes and a series of symmetry-breaking flow patterns. In general, at small gap distances, the four structures behave more like a single body, and the flow fields therefore resemble those around a single cylinder with a large effective cylinder diameter. With increasing gap distance, flow structures around each individual cylinder in the array start to influence the overall flow patterns, and the flow field shows a variety of symmetry and asymmetry patterns as a result of vortex and shear layer interactions. The characteristics of hydrodynamic forces on individual cylinders as well as on the cylinder group are also examined. It is found that the hydrodynamic forces respond in a similar manner to the flow field to the cylinder proximity and wake interference.


Corresponding author

Email address for correspondence:


Hide All
An, H., Cheng, L. & Zhao, M. 2011 Direct numerical simulation of oscillatory flow around a circular cylinder at low Keulegan–Carpenter number. J. Fluid Mech. 666, 77103.
Anagnostopoulos, P. & Dikarou, C. 2011 Numerical simulation of viscous oscillatory flow past four cylinders in square arrangement. J. Fluids Struct. 27, 212232.
Anagnostopoulos, P. & Minear, R. 2004 Blockage effect of oscillatory flow past a fixed cylinder. Appl. Ocean Res. 26, 147153.
Bearman, P. W. 1984 Vortex shedding from oscillating bluff bodies. Annu. Rev. Fluid Mech. 16, 195222.
Bearman, P., Downie, M., Graham, J. & Obasaju, E. 1985 Forces on cylinders in viscous oscillatory flow at low Keulegan–Carpenter numbers. J. Fluid Mech. 154, 337356.
Carmo, B. S., Meneghini, J. R. & Sherwin, S. J. 2010 Secondary instabilities in the flow around two circular cylinders in tandem. J. Fluid Mech. 644, 395431.
Chern, M.-J., Rajesh Kanna, P., Lu, Y.-J., Cheng, I. & Chang, S.-C. 2010 A CFD study of the interaction of oscillatory flows with a pair of side-by-side cylinders. J. Fluids Struct. 26, 626643.
Chern, M.-J., Shiu, W.-C. & Horng, T.-L. 2013 Immersed boundary modeling for interaction of oscillatory flow with cylinder array under effects of flow direction and cylinder arrangement. J. Fluids Struct. 43, 325346.
Dütsch, H., Durst, F., Becker, S. & Lienhart, H. 1998 Low-Reynolds-number flow around an oscillating circular cylinder at low Keulegan–Carpenter numbers. J. Fluid Mech. 360, 249271.
Elston, J. R., Blackburn, H. M. & Sheridan, J. 2006 The primary and secondary instabilities of flow generated by an oscillating circular cylinder. J. Fluid Mech. 550, 359389.
Elston, J. R., Sheridan, J. & Blackburn, H. M. 2004 Two-dimensional Floquet stability analysis of the flow produced by an oscillating circular cylinder in quiescent fluid. Eur. J. Mech. (B/ Fluids) 23, 99106.
Hall, P. 1984 On the stability of the unsteady boundary layer on a cylinder oscillating transversely in a viscous fluid. J. Fluid Mech. 146, 347367.
Honji, H. 1981 Streaked flow around an oscillating circular cylinder. J. Fluid Mech. 107, 509520.
Hu, J. & Zhou, Y. 2008 Flow structure behind two staggered circular cylinders. Part 1. Downstream evolution and classification. J. Fluid Mech. 607, 5180.
Iliadis, G. & Anagnostopoulos, P. 1998 Viscous oscillatory flow around a circular cylinder at low Keulegan–Carpenter numbers and frequency parameters. Intl J. Numer. Meth. Fluids 26, 403442.
Justesen, P. 1991 A numerical study of oscillating flow around a circular cylinder. J. Fluid Mech. 222, 157196.
Kuehtz, S.1996 Experimental investigation of oscillatory flow around circular cylinders at low ${\it\beta}$ numbers. PhD thesis, Imperial College London.
Lin, X. W., Bearman, P. W. & Graham, J. M. R. 1996 A numerical study of oscillatory flow about a circular cylinder for low values of beta parameter. J. Fluids Struct. 10, 501526.
Maull, D. & Milliner, M. 1978 Sinusoidal flow past a circular cylinder. Coast. Engng 2, 149168.
Morison, J., Johnson, J. & Schaaf, S. 1950 The force exerted by surface waves on piles. J. Petrol. Tech. 2, 149154.
Nehari, D., Armenio, V. & Ballio, F. 2004 Three-dimensional analysis of the unidirectional oscillatory flow around a circular cylinder at low Keulegan–Carpenter and beta numbers. J. Fluid Mech. 520, 157186.
Obasaju, E., Bearman, P. & Graham, J. 1988 A study of forces, circulation and vortex patterns around a circular cylinder in oscillating flow. J. Fluid Mech. 196, 467494.
Papaioannou, G. V., Yue, D. K. P., Triantafyllou, M. S. & Karniadakis, G. E. 2006 Three-dimensionality effects in flow around two tandem cylinders. J. Fluid Mech. 558, 387413.
Saghafian, M., Stansby, P., Saidi, M. & Apsley, D. 2003 Simulation of turbulent flows around a circular cylinder using nonlinear eddy-viscosity modelling: steady and oscillatory ambient flows. J. Fluids Struct. 17, 12131236.
Sarpkaya, T. 2002 Experiments on the stability of sinusoidal flow over a circular cylinder. J. Fluid Mech. 457, 157180.
Scandura, P., Armenio, V. & Foti, E. 2009 Numerical investigation of the oscillatory flow around a circular cylinder close to a wall at moderate Keulegan–Carpenter and low Reynolds numbers. J. Fluid Mech. 627, 259290.
Tatsuno, M. & Bearman, P. 1990 A visual study of the flow around an oscillating circular cylinder at low Keulegan–Carpenter numbers and low Stokes numbers. J. Fluid Mech. 211, 157182.
Uzunoğlu, B., Tan, M. & Price, W. 2001 Low-Reynolds-number flow around an oscillating circular cylinder using a cell viscous boundary element method. Intl J. Numer. Meth. Engng 50, 23172338.
Williamson, C. H. K. 1985 Sinusoidal flow relative to circular cylinders. J. Fluid Mech. 155, 141174.
Yang, K., Cheng, L., An, H., Bassom, A. P. & Zhao, M. 2013 The effect of a piggyback cylinder on the flow characteristics in oscillatory flow. Ocean Engng 62, 4555.
Zdravkovich, M. M. 1987 The effects of interference between circular cylinders in cross flow. J. Fluids Struct. 1, 239261.
Zhao, M. & Cheng, L. 2014 Vortex shedding regimes of oscillatory flow past two circular cylinders in side-by-side and tandem arrangements at low Reynolds number. J. Fluid Mech. 751, 1137.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed