Skip to main content Accessibility help

Oscillatory convection and limitations of the Boussinesq approximation

  • T. S. Wood (a1) and P. J. Bushby (a1)


We determine the asymptotic conditions under which the Boussinesq approximation is valid for oscillatory convection in a rapidly rotating fluid. In the astrophysically relevant parameter regime of small Prandtl number, we show that the Boussinesq prediction for the onset of convection is valid only under much more restrictive conditions than those that are usually assumed. In the case of an ideal gas, we recover the Boussinesq results only if the ratio of the domain height to a typical scale height is much smaller than the Prandtl number. This requires an extremely shallow domain in the astrophysical parameter regime. Other commonly used ‘sound-proof’ approximations generally perform no better than the Boussinesq approximation. The exception is a particular implementation of the pseudo-incompressible approximation, which predicts the correct instability threshold beyond the range of validity of the Boussinesq approximation.


Corresponding author

Email address for correspondence:


Hide All
Achatz, U., Klein, R. & Senf, F. 2010 Gravity waves, scale asymptotics and the pseudo-incompressible equations. J. Fluid Mech. 663, 120147.
Berkoff, N. A., Kersale, E. & Tobias, S. M. 2010 Comparison of the anelastic approximation with fully compressible equations for linear magnetoconvection and magnetic buoyancy. Geophys. Astrophys. Fluid Dyn. 104, 545563.
Braginsky, S. I. & Roberts, P. H. 1995 Equations governing convection in earth’s core and the geodynamo. Geophys. Astrophys. Fluid Dyn. 79, 197.
Braginsky, S. I. & Roberts, P. H. 2007 Anelastic and Boussinesq approximations. In Encyclopedia of Geomagnetism and Paleomagnetism (ed. Gubbins, D. & Herrero-Bervera, E.), pp. 1119. Springer.
Brown, B. P., Vasil, G. M. & Zweibel, E. G. 2012 Energy conservation and gravity waves in sound-proof treatments of stellar interiors. Part I. Anelastic approximations. Astrophys. J. 756, 109.
Calkins, M. A., Julien, K. & Marti, P. 2015 The breakdown of the anelastic approximation in rotating compressible convection: implications for astrophysical systems. Proc. R. Soc. Lond. A 471, 20140689.
Chandrasekhar, S. 1953 The instability of a layer of fluid heated below and subject to Coriolis forces. Proc. R. Soc. Lond. A 217, 306327.
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Clarendon.
Cotter, C. J. & Holm, D. D. 2014 Variational formulations of sound-proof models. Q. J. R. Meteorol. Soc. 140, 19661973.
Drew, S. J., Jones, C. A. & Zhang, K. 1995 Onset of convection in a rapidly rotating compressible fluid spherical shell. Geophys. Astrophys. Fluid Dyn. 80, 241254.
Durran, D. R. 1989 Improving the anelastic approximation. J. Atmos. Sci. 46, 14531461.
Durran, D. R. 2008 A physically motivated approach for filtering acoustic waves from the equations governing compressible stratified flow. J. Fluid Mech. 601, 365379.
Eckart, C. & Ferris, H. G. 1956 Equations of motion of the ocean and atmosphere. Rev. Mod. Phys. 28, 4852.
Gough, D. O., Moore, D. R., Spiegel, E. A. & Weiss, N. O. 1976 Convective instability in a compressible atmosphere. II. Astrophys. J. 206, 536542.
Gray, D. D. & Giorgini, A. 1976 The validity of the boussinesq approximation for liquids and gases. Intl J. Heat Mass Transfer 19, 545551.
Jones, C. A., Kuzanyan, K. M. & Mitchell, R. H. 2009 Linear theory of compressible convection in rapidly rotating spherical shells, using the anelastic approximation. J. Fluid Mech. 634, 291.
Klein, R., Achatz, U., Bresch, D., Knio, O. M. & Smolarkiewicz, P. K. 2010 Regime of validity of soundproof atmospheric flow models. J. Atmos. Sci. 67, 32263237.
Klein, R. & Pauluis, O. 2012 Thermodynamic consistency of a pseudoincompressible approximation for general equations of state. J. Atmos. Sci. 69, 961968.
Landau, L. D. & Lifshitz, E. M. 1980 Statistical Physics. Part 1, 3rd edn. Course of Theoretical Physics, vol. 5. Pergamon Press.
Lantz, S. R.1992 Dynamical behavior of magnetic fields in a stratified, convecting fluid layer. PhD thesis, Cornell University.
Lecoanet, D., Brown, B. P., Zweibel, E. G., Burns, K. J., Oishi, J. S. & Vasil, G. M. 2014 Conduction in low Mach number flows. I. Linear and weakly nonlinear regimes. Astrophys. J. 797, 94.
Lipps, F. B. & Hemler, R. S. 1982 A scale analysis of deep moist convection and some related numerical calculations. J. Atmos. Sci. 39, 21922210.
Mihaljan, J. M. 1962 A rigorous exposition of the Boussinesq approximations applicable to a thin layer of fluid. Astrophys. J. 136, 1126.
Ogura, Y. & Phillips, N. A. 1962 Scale analysis of deep and shallow convection in the atmosphere. J. Atmos. Sci. 19, 173179.
O’Neill, W. P. & Klein, R. 2014 A moist pseudo-incompressible model. Atmos. Res. 142, 133141.
Spiegel, E. A. & Veronis, G. 1960 On the Boussinesq approximation for a compressible fluid. Astrophys. J. 131, 442447.
Vasil, G. M., Lecoanet, D., Brown, B. P., Wood, T. S. & Zweibel, E. G. 2013 Energy conservation and gravity waves in sound-proof treatments of Stellar interiors. II. Lagrangian constrained analysis. Astrophys. J. 773, 169.
Veronis, G. 1962 The magnitude of the dissipation terms in the Boussinesq approximation. Astrophys. J. 135, 655656.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Oscillatory convection and limitations of the Boussinesq approximation

  • T. S. Wood (a1) and P. J. Bushby (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed