Skip to main content Accessibility help

Orientation and rotation of inertial disk particles in wall turbulence

  • Niranjan Reddy Challabotla (a1), Lihao Zhao (a1) and Helge I. Andersson (a1)


The translational and rotational dynamics of oblate spheroidal particles suspended in a directly simulated turbulent channel flow have been examined. Inertial disk-like particles exhibited a significant preferential orientation in the plane of the mean shear. The rotational inertia about the symmetry axis of the disk-like particles hampered the spin-up of the flattest particles to match the mean flow vorticity. The influence of the particle shape on the orientation and rotation diminished as the translational inertia increased from Stokes number 1 to 30. An isotropization of both orientation and rotation could be observed in the core region of the channel. The translational motion of the oblate spheroids had a weak dependence on the aspect ratio. We therefore concluded that inertial particles sample nearly the same flow field irrespective of shape. Nevertheless, the orientation and rotation of disk-like particles turned out to be qualitatively different from the dynamics of fibre-like particles.


Corresponding author

Email address for correspondence:


Hide All
Andersson, H. I. & Soldati, A. 2013 Anisotropic particles in turbulence: status and outlook. Acta Mechanica 224, 22192223.
Brenner, H. 1964 The Stokes resistance of an arbitrary particle – IV: arbitrary fields of flow. Chem. Engng Sci. 19, 703727.
Challabotla, N. R., Nilsen, C. & Andersson, H. I. 2015 On rotational dynamics of inertial disks in creeping shear flow. Phys. Lett. A 379, 157162.
Do-Quang, M., Amberg, G., Brethouwer, G. & Johansson, A. V. 2014 Simulation of finite-size fibers in turbulent channel flows. Phys. Rev. E 89, 013006.
Fan, F. G. & Ahmadi, G. 1995 A sublayer model for wall deposition of ellipsoidal particles in turbulent streams. J. Aero. Sci. 26, 813840.
Gallily, I. & Cohen, A.-H. 1979 On the orderly nature of the motion of nonspherical aerosol particles. II. Inertial collision between a spherical large droplet and an axially symmetrical elongated particle. J. Colloid Interface Sci. 68, 338356.
Gauthier, G., Gondret, P. & Rabaud, M. 1998 Motions of anisotropic particles: application to visualization of three-dimensional flows. Phys. Fluids 10, 21472154.
Gustavsson, K., Einarsson, J. & Mehlig, B. 2014 Tumbling of small axisymmetric particles in random and turbulent flows. Phys. Rev. Lett. 112, 014501.
Harper, E. Y. & Chang, I.-D. 1968 Maximum dissipation resulting from lift in a slow viscous shear flow. J. Fluid Mech. 33, 209225.
Jeffery, G. B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A 102, 161179.
Kleinstreuer, C. & Feng, Y. 2013 Computational analysis of non-spherical particle transport and deposition in shear flow with application to lung aerosol dynamics – a review. J. Biomech. Engng 135, 021008.
Klett, J. D. 1995 Orientation model for particles in turbulence. J. Atmos. Sci. 52, 22762285.
Lucci, F., Ferrante, A. & Elghobashi, S. 2010 Modulation of isotropic turbulence by particles of Taylor length-scale size. J. Fluid Mech. 650, 555.
Lundell, F. & Carlsson, A. 2010 Heavy ellipsoids in creeping shear flow: transitions of the particle rotation rate and orbit shape. Phys. Rev. E 81, 016323.
Marchioli, C., Soldati, A., Kuerten, J. G. M., Arcen, B., Tanière, A., Goldensoph, G., Squires, K. D., Cargnelutti, M. F. & Portela, L. M. 2008 Statistics of particle dispersion in direct numerical simulations of wall-bounded turbulence: results of an international collaborative benchmark test. Intl J. Multiphase Flow 34, 879893.
Marchioli, C., Fantoni, M. & Soldati, A. 2010 Orientation, distribution, and deposition of elongated, inertial fibers in turbulent channel flow. Phys. Fluids 22, 033301.
Marchioli, C. & Soldati, A. 2013 Rotation statistics of fibers in wall shear turbulence. Acta Mechanica 224, 23112329.
Marcus, G. G., Parsa, S., Kramel, S., Ni, R. & Voth, G. A. 2014 Measurements of the solid-body rotation of anisotropic particles in 3D turbulence. New J. Phys. 16, 102001.
Mortensen, P. H., Andersson, H. I., Gillissen, J. J. J. & Boersma, B. J. 2008 a Dynamics of prolate ellipsoidal particles in a turbulent channel flow. Phys. Fluids 20, 093302.
Mortensen, P. H., Andersson, H. I., Gillissen, J. J. J. & Boersma, B.J. 2008 b On the orientation of ellipsoidal particles in a turbulent shear flow. Intl J. Multiphase Flow 34, 678683.
Njobuenwu, D. O. & Fairweather, M. 2014 Effect of shape on inertial particle dynamics in a channel flow. Flow Turbul. Combust. 92, 83101.
Parsa, S., Calzavarini, E., Toschi, F. & Voth, G. A. 2012 Rotation rate of rods in turbulent fluid flow. Phys. Rev. Lett. 109, 134501.
Shapiro, M. & Goldenberg, M. 1993 Deposition of glass fiber particles from turbulent air flow in a pipe. J. Aero. Sci. 24, 6587.
Siewert, C., Kunnen, R. P. J., Meinke, M. & Schröder, W. 2014 Orientation statistics and settling velocity of ellipsoids in decaying turbulence. Atmos. Res. 142, 4556.
Uhlmann, M. 2008 Interface-resolved direct numerical simulation of vertical particulate channel flow in the turbulent regime. Phys. Fluids 20, 053305.
Zhang, H., Ahmadi, G., Fan, F. G. & McLaughlin, J. B. 2001 Ellipsoidal particles transport and deposition in turbulent channel flows. Intl J. Multiphase Flow 27, 9711009.
Zhao, L., Marchioli, C. & Andersson, H. I. 2014 Slip velocity of rigid fibers in turbulent channel flow. Phys. Fluids 26, 063302.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed