Akhtar, I., Borggaard, J., Burns, J. A., Imtiaz, H. & Zietsman, L.
2015
Using functional gains for effective sensor location in flow control: a reduced-order modelling approach. J. Fluid Mech.
781, 622–656.

Akhtar, I., Borggaard, J., Stoyanov, M. & Zietsman, L.2010 On commutation of reduction and control: linear feedback control of a von Kármán street. *AIAA Paper* 2010-4832.

Anderson, J. L. & Anderson, S. L.
1999
A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Weath. Rev.
127, 2741–2758.

Armijo, L.
1966
Minimization of functions having Lipschitz continuous first partial derivatives. Pac. J. Maths
16, 1–3.

Artana, G., Cammilleri, A., Carlier, J. & Mémin, E.
2012
Strong and weak constraint variational assimilations for reduced order fluid flow modeling. J. Comput. Phys.
231, 3264–3288.

Baek, S.-J. & Sung, H. J.
2000
Quasi-periodicity in the wake of a rotationally oscillating cylinder. J. Fluid Mech.
408, 275–300.

Baker, N. L. & Daley, R.
2000
Observation and background adjoint sensitivity in the adaptive observation-targeting problem. Q. J. R. Meteorol. Soc.
126, 1431–1454.

Belson, B. A., Semeraro, O., Rowley, C. W. & Henningson, D. S.
2013
Feedback control of instabilities in the two-dimensional Blasius boundary layer: the role of sensors and actuators. Phys. Fluids
25, 054106.

Bergmann, M., Cordier, L. & Brancher, J.-P.
2005
Optimal rotary control of the cylinder wake using proper orthogonal decomposition reduced-order model. Phys. Fluids
17, 097101.

Bewley, T. R. & Protas, B.
2004
Skin friction and pressure: the footprints of turbulence. Physica D
196, 28–44.

Borggaard, J., Stoyanov, M. & Zietsman, L.
2010
Linear feedback control of a von Kármán street by cylinder rotation. In Proceedings of the 2010 American Control Conference, pp. 5674–5681. IEEE.

Carpentieri, G., Koren, B. & van Tooren, M. J. L.
2007
Adjoint-based aerodynamic shape optimization on unstructured meshes. J. Comput. Phys.
224, 267–287.

Chen, K. K. & Rowley, C. W.
2011
H_{2} optimal actuator and sensor placement in the linearised complex Ginzburg–Landau system. J. Fluid Mech.
681, 241–260.

Chevalier, M., Hoepffner, J., Bewley, T. R. & Henningson, D.
2006
State estimation in wall-bounded flow systems. Part 2. Turbulent flows. J. Fluid Mech.
552, 167–187.

Choi, H., Jeon, W.-P. & Kim, J.
2008
Control of flow over a bluff body. Annu. Rev. Fluid Mech.
40, 113–139.

Choi, S., Choi, H. & Kang, S.
2002
Characteristics of flow over a rotationally oscillating cylinder at low Reynolds number. Phys. Fluids
14, 2767–2777.

Cioaca, A. & Sandu, A.
2014
An optimization framework to improve 4D-var data assimilation system performance. J. Comput. Phys.
275, 377–389.

Cohen, K., Siegel, S. & McLaughlin, T.
2006
A heuristic approach to effective sensor placement for modeling of a cylinder wake. Comput. Fluids
35, 103–120.

Colburn, C. H., Cessna, J. B. & Bewley, T. R.
2011
State estimation in wall-bounded flow systems. Part 3. The ensemble Kalman filter. J. Fluid Mech.
682, 289–303.

Daescu, D. N.
2008
On the sensitivity equations of four-dimensional variational (4D-Var) data assimilation. Mon. Weath. Rev.
136, 3050–3065.

Ding, H., Shu, C., Yeo, K. S. & Xu, D.
2007
Numerical simulation of flows around two circular cylinders by mesh-free least square-based finite difference methods. Intl J. Numer. Meth. Fluids
53, 305–332.

Evensen, G.
1994
Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res.
99, 10143–10162.

Flinois, T. L. B. & Colonius, T.
2015
Optimal control of circular cylinder wakes using long control horizons. Phys. Fluids
27, 087105.

Foures, D. P. G., Dovetta, N., Sipp, D. & Schmid, P. J.
2014
A data-assimilation method for Reynolds-averaged Navier–Stokes-driven mean flow reconstruction. J. Fluid Mech.
759, 404–431.

Green, L. L., Newman, P. A. & Haigler, K. J.
1996
Sensitivity derivatives for advanced CFD algorithm and viscous modeling parameters via automatic differentiation. J. Comput. Phys.
125, 313–324.

Gronskis, A., Heitz, D. & Mémin, E.
2013
Inflow and initial conditions for direct numerical simulation based on adjoint data assimilation. J. Comput. Phys.
242, 480–497.

Hayase, T.
2015
Numerical simulation of real-world flows. Fluid Dyn. Res.
47, 051201.

He, J.-W., Glowinski, R., Metcalfe, R., Nordlander, A. & Periaux, J.
2000
Active control and drag optimization for flow past a circular cylinder: I. Oscillatory cylinder rotation. J. Comput. Phys.
163, 83–117.

Heitz, D., Mémin, E. & Schnörr, C.
2010
Variational fluid flow measurements from image sequences: synopsis and perspectives. Exp. Fluids
48, 369–393.

Hoepffner, J., Chevalier, M., Bewley, T. R. & Henningson, D.
2005
State estimation in wall-bounded flow systems. Part 1. Perturbed laminar flows. J. Fluid Mech.
534, 263–294.

Homescu, C., Navon, I. M. & Li, Z.
2002
Suppression of vortex shedding for flow around a circular cylinder using optimal control. Intl J. Numer. Meth. Fluids
38, 43–69.

Houtekamer, P. L. & Mitchell, H. L.
2001
A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Weath. Rev.
129, 123–137.

Jameson, A.1991 Time-dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings. *AIAA Paper* 91-1596.

Jawahar, P. & Kamath, H.
2000
A high-resolution procedure for Euler and Navier–Stokes computations on unstructured grids. J. Comput. Phys.
164, 165–203.

Juillet, F., Schmid, P. J. & Huerre, P.
2013
Control of amplifier flows using subspace identification techniques. J. Fluid Mech.
725, 522–565.

Kalman, R. E.
1960
A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Engng
82, 35–45.

Kang, W. & Xu, L.
2012
Optimal placement of mobile sensors for data assimilations. Tellus A
64, 17133.

Kato, H., Yoshizawa, A., Ueno, G. & Obayashi, S.
2015
A data assimilation methodology for reconstructing turbulent flows around aircraft. J. Comput. Phys.
283, 559–581.

Kumar, S., Lopez, C., Probst, O., Francisco, G., Askari, D. & Yang, Y.
2013
Flow past a rotationally oscillating cylinder. J. Fluid Mech.
735, 307–346.

Langland, R. H. & Baker, N. L.
2004
Estimation of observation impact using the NRL atmospheric variational data assimilation adjoint system. Tellus A
56, 189–201.

Le Dimet, F.-X., Navon, I. M. & Daescu, D. N.
2002
Second-order information in data assimilation. Mon. Weath. Rev.
130, 629–648.

Le Dimet, F.-X., Ngodock, H.-E., Luong, B. & Verron, J.
1997
Sensitivity analysis in variational data assimilation. J. Met. Soc. Japan
75, 245–255.

Le Dimet, F.-X. & Talagrand, O.
1986
Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus A
38A, 97–110.

van Leeuwen, P. J. & Evensen, G.
1996
Data assimilation and inverse methods in terms of a probabilistic formulation. Mon. Weath. Rev.
124, 2898–2913.

Lewis, J. M., Lakshmivarahan, S. & Dhall, S. K.
2006
Dynamic Data Assimilation: A Least Squares Approach, Encyclopedia of Mathematics and its Applications, vol. 104. Cambridge University Press.

Lions, J. L.
1971
Optimal Control of Systems Governed by Partial Differential Equations. Springer.

Liu, C., Xiao, Q. & Wang, B.
2008
An ensemble-based four-dimensional variational data assimilation scheme. Part I: technical formulation and preliminary test. Mon. Weath. Rev.
136, 3363–3373.

Liu, C., Zheng, X. & Sung, C. H.
1998
Preconditioned multigrid methods for unsteady incompressible flows. J. Comput. Phys.
139, 35–57.

Luo, H., Baum, J. D. & Löhner, R.
2001
An accurate, fast, matrix-free implicit method for computing unsteady flows on unstructured grids. Comput. Fluids
30, 137–159.

Mohammadi, B. & Pironneau, O.
2010
Applied Shape Optimization for Fluids, 2nd edn. Oxford University Press.

Mokhasi, P. & Rempfer, D.
2004
Optimized sensor placement for urban flow measurement. Phys. Fluids
16, 1758–1764.

Mons, V., Chassaing, J.-C., Gomez, T. & Sagaut, P.
2014
Is isotropic turbulence decay governed by asymptotic behavior of large scales? An eddy-damped quasi-normal Markovian-based data assimilation study. Phys. Fluids
26, 115105.

Mons, V., Chassaing, J.-C., Gomez, T. & Sagaut, P.
2016
Reconstruction of unsteady viscous flows using data assimilation schemes. J. Comput. Phys.
316, 255–280.

Nadarajah, S. K. & Jameson, A.2001 Studies of continuous and discrete adjoint approaches to viscous automatic aerodynamic shape optimization. *AIAA Paper* 2001-2530.

Nocedal, J.
1980
Updating quasi-Newton matrices with limited storage. Maths Comput.
35, 773–782.

Papadakis, N. & Mémin, E.
2008
Variational assimilation of fluid motion from image sequence. SIAM J. Imaging Sci.
1, 343–363.

Peter, J. E. V. & Dwight, R. P.
2010
Numerical sensitivity analysis for aerodynamic optimization: a survey of approaches. Comput. Fluids
39, 373–391.

Posdziech, O. & Grudmann, R.
2007
A systematic approach to the numerical calculation of fundamental quantities of the two-dimensional flow over a circular cylinder. J. Fluids Struct.
23, 479–499.

Protas, B. & Styczek, A.
2002
Optimal rotary control of the cylinder wake in the laminar regime. Phys. Fluids
14, 2073–2087.

Qu, L., Norberg, C., Davidson, L., Peng, S.-H. & Wang, F.
2013
Quantitative numerical analysis of flow past a circular cylinder at Reynolds number between 50 and 200. J. Fluids Struct.
39, 347–370.

Roe, P. L.
1981
Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys.
43, 357–372.

Sharov, D. & Nakahashi, K.1997 Reordering of 3-D hybrid unstructured grids for vectorized LU-SGS Navier–Stokes computations. *AIAA Paper* 97-2102.

Stoyanov, M. K.2009 Reduced order methods for large scale Riccati equations. PhD thesis, Virginia Polytechnic Institute and State University.

Suzuki, T.
2012
Reduced-order Kalman-filtered hybrid simulation combining particle tracking velocimetry and direct numerical simulation. J. Fluid Mech.
709, 249–288.

Talagrand, O.
1997
Assimilation of observations, an introduction. J. Met. Soc. Japan
75, 191–209.

Thiria, B., Goujon-Durand, S. & Wesfreid, J. E.
2006
The wake of a cylinder performing rotary oscillations. J. Fluid Mech.
560, 123–147.

Thiria, B. & Wesfreid, J. E.
2007
Stability properties of forced wakes. J. Fluid Mech.
579, 137–161.

Tokumaru, P. & Dimotakis, P. E.
1991
Rotary oscillation control of cylinder wake. J. Fluid Mech.
224, 77–90.

Wang, Z., Navon, I. M., Le Dimet, F.-X. & Zou, X.
1992
The second order adjoint analysis: theory and applications. Meteorol. Atmos. Phys.
50, 3–20.

Wikle, C. K. & Berliner, L. M.
2007
A Bayesian tutorial for data assimilation. Physica D
230, 1–16.

Willcox, K.
2006
Unsteady flow sensing and estimation via the gappy proper orthogonal decomposition. Comput. Fluids
35, 208–226.

Williamson, C. H. K.
1996
Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech.
28, 477–539.

Yildirim, B., Chryssostomidis, C. & Karniadakis, G. E.
2009
Efficient sensor placement for ocean measurements using low-dimensional concepts. Ocean Model.
27, 160–173.