Skip to main content Accessibility help

Optimal mixing in two-dimensional plane Poiseuille flow at finite Péclet number

  • D. P. G. Foures (a1), C. P. Caulfield (a1) (a2) and P. J. Schmid (a3)


We consider the nonlinear optimisation of the mixing of a passive scalar, initially arranged in two layers, in a two-dimensional plane Poiseuille flow at finite Reynolds and Péclet numbers, below the linear instability threshold. We use a nonlinear-adjoint-looping approach to identify optimal perturbations leading to maximum time-averaged energy as well as maximum mixing in a freely evolving flow, measured through the minimisation of either the passive scalar variance or the so-called mix-norm, as defined by Mathew, Mezić & Petzold (Physica D, vol. 211, 2005, pp. 23–46). We show that energy optimisation appears to lead to very weak mixing of the scalar field whereas the optimal mixing initial perturbations, despite being less energetic, are able to homogenise the scalar field very effectively. For sufficiently long time horizons, minimising the mix-norm identifies optimal initial perturbations which are very similar to those which minimise scalar variance, demonstrating that minimisation of the mix-norm is an excellent proxy for effective mixing in this finite-Péclet-number bounded flow. By analysing the time evolution from initial perturbations of several optimal mixing solutions, we demonstrate that our optimisation method can identify the dominant underlying mixing mechanism, which appears to be classical Taylor dispersion, i.e. shear-augmented diffusion. The optimal mixing proceeds in three stages. First, the optimal mixing perturbation, energised through transient amplitude growth, transports the scalar field across the channel width. In a second stage, the mean flow shear acts to disperse the scalar distribution leading to enhanced diffusion. In a final third stage, linear relaxation diffusion is observed. We also demonstrate the usefulness of the developed variational framework in a more realistic control case: mixing optimisation by prescribed streamwise velocity boundary conditions.


Corresponding author

Email address for correspondence:


Hide All
Aamo, O. M. & Krstić, M. 2003 Flow Control by Feedback: Stabilization and Mixing. Springer.
Aamo, O. M. & Krstić, M. 2004 Feedback control of particle dispersion in bluff body wakes. Intl J. Control 77, 10011018.
Aamo, O. M., Krstić, M. & Bewley, T. R. 2003 Control of mixing by boundary feedback in 2d channel flow. Automatica 39, 15971606.
Annaswamy, A. M. & Ghoniem, A. F. 1995 Active control in combustion systems. IEEE Control Syst. 15, 4963.
Aref, H. 1984 Stirring by chaotic advection. J. Fluid Mech. 143, 121.
Balogh, A., Aamo, O. M. & Krstić, M. 2005 Optimal mixing enhancement in 3-D pipe flow. IEEE Trans. Control Syst. Technol. 13, 2741.
Cherubini, S., De Palma, P., Robinet, J.-C. & Bottaro, A. 2010 Rapid path to transition via nonlinear localised optimal perturbations in a boundary-layer flow. Phys. Rev. E 82, 066302.
D’Alessandro, D., Dahleh, M. & Mezic, I. 1999 Control of mixing in fluid flow: a maximum entropy approach. IEEE Trans. Autom. Control 44, 18521863.
Danckwerts, P. V. 1952 The definition and measurement of some characteristics of mixtures. Appl. Sci. Res. A 3, 279296.
Duguet, Y., Monokrousos, A., Brandt, L. & Henningson, D. S. 2013 Minimal transition thresholds in plane Couette flow. Phys. Fluids 25, 084103.
Eckart, C. 1948 An analysis of the stirring and mixing processes in incompressible fluids. J. Mar. Res. 7, 265275.
Foures, D. P. G., Caulfield, C. P. & Schmid, P. J. 2013 Localization of flow structures using $\infty $ -norm optimization. J. Fluid Mech. 729, 672701.
Fursikov, A. V., Gunzburger, M. D. & Hou, L. 1998 Boundary value problems and optimal boundary control for the Navier–Stokes system: the two-dimensional case. SIAM J. Control Optim. 36 (3), 852894.
Guégan, A., Schmid, P. J. & Huerre, P. 2006 Optimal energy growth and optimal control in swept Hiemenz flow. J. Fluid Mech. 566, 1145.
Guermond, J. L., Minev, P. & Shen, J. 2006 An overview of projection methods for incompressible flows. Comput. Meth. Appl. Mech. Engng 195, 60116045.
Hessel, V., Löwe, H. & Schönfeld, F. 2005 Micromixers - a review on passive and active mixing principles. Chem. Engng Sci. 60, 24792501.
Juniper, M. P. 2011 Triggering in the horizontal Rijke tube: non-normality, transient growth and bypass transition. J. Fluid Mech. 667, 272308.
Lekien, F., Coulliette, C., Mariano, A. J., Ryan, E. H., Shay, L. K., Haller, G. & Marsden, J. 2005 Pollution release tied to invariant manifolds: a case study for the coast of Florida. Physica D 210, 120.
Lin, Z., Thiffeault, J.-L. & Doering, C. R. 2011 Optimal stirring strategies for passive scalar mixing. J. Fluid Mech. 675, 465476.
Linden, P. F. 1999 The fluid mechanics of natural ventilation. Annu. Rev. Fluid Mech. 31, 201238.
Lindzen, R. S. 1988 Instability of plane parallel shear flow (toward a mechanistic picture of how it works). Pure Appl. Geophys. 126, 103121.
Liu, W. 2008 Mixing enhancement by optimal flow advection. SIAM J. Control Optim. 47, 624638.
Lunasin, E., Lin, Z., Novikov, A., Mazzucato, A. & Doering, C. R. 2012 Optimal mixing and optimal stirring for fixed energy, fixed power, or fixed palenstrophy flows. J. Math. Phys. 53, 115611.
Mao, X., Blackburn, H. M. & Sherwin, S. J. 2012 Optimal inflow boundary condition perturbations in steady stenotic flow. J. Fluid Mech. 705, 306321.
Mathew, G., Mezic, I., Grivopoulos, S., Vaidya, U. & Petzold, L. 2007 Optimal control of mixing in Stokes fluid flows. J. Fluid Mech. 580, 261281.
Mathew, G., Mezić, I. & Petzold, L. 2005 A multiscale measure for mixing. Physica D 211, 2346.
Monokrousos, A., Bottaro, A., Brandt, L., Di Vita, A. & Henningson, D. S. 2011 Nonequilibrium thermodynamics and the optimal path to turbulence in shear flows. Phys. Rev. Lett. 106, 134502.
Nguyen, N.-T. & Wu, Z. 2005 Micromixers: a review. J. Micromech. Microengng 15, R1.
Orr, W. M. F. 1907 The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Part I: a perfect liquid, part II: a viscous liquid. Proc. R. Irish Acad. A 27, 9138.
Ottino, J. M. 1990 Mixing, chaotic advection, and turbulence. Annu. Rev. Fluid Mech. 22, 207254.
Pringle, C. C. T. & Kerswell, R. R. 2010 Using nonlinear transient growth to construct the minimal seed for shear flow turbulence. Phys. Rev. Lett. 105, 154502.
Rabin, S. M. E., Caulfield, C. P. & Kerswell, R. R. 2012 Triggering turbulence efficiently in plane Couette flow. J. Fluid Mech. 712, 244272.
Rabin, S. M. E., Caulfield, C. P. & Kerswell, R. R. 2014 Designing a more nonlinearly stable laminar flow via boundary manipulation. J. Fluid Mech. 738, R1.
Rhines, P. B. & Young, W. R. 1983 How rapidly is a passive scalar mixed within closed streamlines? J. Fluid Mech. 133, 133145.
Taylor, G. I. 1953 Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. A 219, 186203.
Thiffeault, J.-L. 2012 Using multiscale norms to quantify mixing and transport. Nonlinearity 25, R1.
Wunsch, C. & Ferrari, R. 2004 Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech. 36, 281314.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Optimal mixing in two-dimensional plane Poiseuille flow at finite Péclet number

  • D. P. G. Foures (a1), C. P. Caulfield (a1) (a2) and P. J. Schmid (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed