Skip to main content Accessibility help
×
×
Home

The optimal kinematic dynamo driven by steady flows in a sphere

  • L. Chen (a1), W. Herreman (a2), K. Li (a1), P. W. Livermore (a3), J. W. Luo (a1) and A. Jackson (a1)...

Abstract

We present a variational optimization method that can identify the most efficient kinematic dynamo in a sphere, where efficiency is based on the value of a magnetic Reynolds number that uses enstrophy to characterize the inductive effects of the fluid flow. In this large-scale optimization, we restrict the flow to be steady and incompressible, and the boundary of the sphere to be no-slip and electrically insulating. We impose these boundary conditions using a Galerkin method in terms of specifically designed vector field bases. We solve iteratively for the flow field and the accompanying magnetic eigenfunction in order to find the minimal critical magnetic Reynolds number $Rm_{c,min}$ for the onset of a dynamo. Although nonlinear, this iteration procedure converges to a single solution and there is no evidence that this is not a global optimum. We find that $Rm_{c,min}=64.45$ is at least three times lower than that of any published example of a spherical kinematic dynamo generated by steady flows, and our optimal dynamo clearly operates above the theoretical lower bounds for dynamo action. The corresponding optimal flow has a spatially localized helical structure in the centre of the sphere, and the dominant components are invariant under rotation by  $\unicode[STIX]{x03C0}$ .

Copyright

Corresponding author

Email address for correspondence: ajackson@ethz.ch

References

Hide All
Alexakis, A. 2011 Searching for the fastest dynamo: laminar ABC flows. Phys. Rev. E 84, 026321.
Backus, G. 1958 A class of self-sustaining dissipative spherical dynamos. Ann. Phys. 4 (4), 372447.
Bullard, E. C. & Gellman, H. 1954 Homogeneous dynamos and terrestrial magnetism. Phil. Trans. R. Soc. Lond. 247 (928), 213278.
Bullard, E. C. & Gubbins, D. 1977 Generation of magnetic fields by fluid motions of global scale. Geophys. Astrophys. Fluid Dyn. 8 (1), 4356.
Busse, F. 1975 A necessary condition for the geodynamo. J. Geophys. Res. 80, 278280.
Chen, L., Herreman, W. & Jackson, A. 2015 Optimal dynamo action by steady flows confined in a cube. J. Fluid Mech. 783, 2345.
Childress, S.1969 Thèorie magnétohydrodynamique de l’effet dynamo. Technical Report, Department Méchanique de la Faculité des Sciences, Université de Paris.
Christensen, U. R. & Aubert, J. 2006 Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields. Geophys. J. Intl 166, 97D114.
Dudley, M. L. & James, R. W. 1989 Time-dependent kinematic dynamos with stationary flows. Proc. R. Soc. Lond. A 425, 407429.
Duguet, Y., Monokrousos, A., Brandt, L. & Henningson, D. S. 2013 Minimal transition thresholds in plane Couette flow. Phys. Fluids 25 (8), 084103.
Farrell, B. & Ioannou, P. 1996 Generalized stability theory. Part 1. Autonomous operators. J. Atmos. Sci. 53 (14), 20252040.
Gubbins, D. 1973 Numerical solutions of the kinematic dynamo problem. Phil. Trans. R. Soc. Lond. A 274, 493521.
Gubbins, D. 2008 Implication of kinematic dynamo studies for the geodynamo. Geophys. J. Intl 173 (1), 7991.
Gubbins, D., Barber, C. N., Gibbons, S. & Love, J. J. 2000a Kinematic dynamo action in a sphere. I. Effects of differential rotation and meridional circulation on solutions with axial dipole symmetry. Proc. R. Soc. Lond. A 456, 13331353.
Gubbins, D., Barber, C. N., Gibbons, S. & Love, J. J. 2000b Kinematic dynamo action in a sphere. II. Symmetry selection. Proc. R. Soc. Lond. A 456, 16691683.
Herreman, W. 2016 Minimal flow perturbations that trigger kinematic dynamo in shear flows. J. Fluid Mech. 795, R1.
Holme, R. 1997 Three-dimensional kinematic dynamos with equatorial symmetry: application to the magnetic fields of Uranus and Neptune. Phys. Earth Planet. Inter. 102 (1), 105122.
Holme, R. 2003 Optimised axially-symmetric kinematic dynamos. Phys. Earth Planet. Inter. 140 (1), 311.
Kerswell, R. R., Pringle, C. C. T. & Willis, A. P. 2014 An optimization approach for analysing nonlinear stability with transition to turbulence in fluids as an exemplar. Rep. Progr. Phys. 77 (8), 085901.
Khalzov, I. V., Brown, B. P., Cooper, C. M., Weisberg, D. B. & Forest, C. B. 2012 Optimized boundary driven flows for dynamos in a sphere. Phys. Plasmas 19 (11), 112106.
Kumar, S. & Roberts, P. H. 1975 A spectral solution of the magneto-convection equations in spherical geometry. Proc. R. Soc. Lond.  A 344, 235238.
Li, K., Jackson, A. & Livermore, P. W. 2011 Variational data assimilation for the initial value dynamo problem. Phys. Rev. E 84, 056321.
Li, K., Livermore, P. W. & Jackson, A. 2010 An optimal Galerkin scheme to solve the kinematic dynamo eigenvalue problem in a full sphere. J. Comput. Phys. 229, 86668683.
Livermore, P. W.2009 A compendium of Galerkin orthogonal polynomials.http://escholarship.org/uc/item/9vk1c6cm.
Livermore, P. W. 2010 Galerkin orthogonal polynomials. J. Comput. Phys. 229, 20462060.
Livermore, P. W., Hughes, D. W. & Tobias, S. M. 2007 The role of helicity and stretching in forced kinematic dynamos in a spherical shell. Phys. Fluids 19 (5), 057101.
Livermore, P. W. & Ierley, G. 2010 Quasi-L p norm orthogonal Galerkin expansions in sums of Jacobi polynomials. Numer. Algorithms 54 (333), 533569.
Livermore, P. W. & Jackson, A. 2004 On magnetic energy instability in spherical stationary flows. Proc. R. Soc. Lond. A 460 (2045), 14531476.
Livermore, P. W. & Jackson, A. 2005 A comparison of numerical schemes to solve the magnetic induction eigenvalue problem in a spherical geometry. Geophys. Astrophys. Fluid Dyn. 99 (6), 467480.
Livermore, P. W. & Jackson, A. 2006 Transient magnetic energy growth in spherical stationary flows. Proc. R. Soc. Lond. A 462 (2072), 24572479.
Love, J. J. & Gubbins, D. 1996a Dynamos driven by poloidal flow exist. Geophys. Res. Lett. 23 (8), 857860.
Love, J. J. & Gubbins, D. 1996b Optimized kinematic dynamos. Geophys. J. Intl. 124 (3), 787800.
Marie, L., Burguete, J., Daviaud, F. & Léorat, J. 2003 Numerical study of homogeneous dynamo based on experimental von Karman type flows. Eur. Phys. J. B 33, 469485.
Moffatt, H. K. 1983 Magnetic Field Generation in Electrically Conducting Fluids. Cambridge University Press.
Namikawa, T. & Matsushita, S. 1970 Kinematic dynamo problem. Geophys. J. R. Astron. Soc. 19 (4), 395415.
Pekeris, C., Accad, Y. & Shkoller, B. 1973 Kinematic dynamos and the Earth’s magnetic field. Phil. Trans. R. Soc. Lond. A 275 (1251), 425461.
Pringle, C. C. T., Willis, A. P. & Kerswell, R. R. 2012 Minimal seeds for shear flow turbulence: using nonlinear transient growth to touch the edge of chaos. J. Fluid Mech. 702, 415443.
Proctor, M. R. E. 1977 On Backus’ necessary condition for dynamo action in a conducting sphere. Geophys. Astrophys. Fluid Dyn. 9, 8993.
Proctor, M. R. E. 1979 Necessary conditions for the magnetohydrodynamic dynamo. Geophys. Astrophys. Fluid Dyn. 14 (1), 127145.
Proctor, M. R. E. 2015 Energy requirement for a working dynamo. Geophys. Astrophys. Fluid Dyn. 109 (6), 611614.
Ravelet, F., Chiffaudel, A., Daviaud, F. & Léorat., J. 2005 Towards an experimental von Karman dynamo: numerical studies for an optimized design. Phys. Fluids 17, 117104.
Sadek, M., Alexakis, A. & Fauve, S. 2016 Optimal length scale for a turbulent dynamo. Phys. Rev. Lett. 116, 074501.
Sarson, G. R. 2003 Kinematic dynamos driven by thermal wind flows. Proc. Math. Phys. Engng. Sci. 459 (2033), 12411259.
Stefani, F., Gerbeth, G. & Gailitis, A. 1999 Velocity profile optimization for the Riga dynamo experiment. In Transfer Phenomena in Magnetohydrodynamic and Electroconducting Flows, pp. 3144. Springer.
Willis, A. P. 2012 Optimization of the magnetic dynamo. Phys. Rev. Lett. 109 (25), 251101.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Type Description Title
UNKNOWN
Supplementary materials

Chen et al. supplementary material
Chen et al. supplementary material 1

 Unknown (38.8 MB)
38.8 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed