Skip to main content Accessibility help
×
Home

The onset of strongly localized thermal convection in rotating spherical shells

  • Andrew P. Bassom (a1), Andrew M. Soward (a2) (a3) and Sergey V. Starchenko (a4)

Abstract

A Boussinesq fluid of kinematic velocity and thermal diffusivity is confined within a rapidly rotating shell with inner and outer sphere boundary radii and , respectively. The boundaries of the shell corotate at angular velocity and a continuously varying stratification profile is applied which is unstable in and stable in . When , the unstable zone attached to the inner boundary is thin. As in previous small Ekman number studies, convection at the onset of instability takes on the familiar ‘cartridge belt’ structure, which is localized within a narrow layer adjacent to, but outside, the cylinder tangent to the inner sphere at its equator (Dormy et al. J. Fluid Mech., 2004, vol. 501, pp. 43–70), with estimated radial width of order . The azimuthally propagating convective columns, described by the cartridge belt, reside entirely within the unstable layer when , and extend from the equatorial plane an axial distance along the tangent cylinder as far as its intersection with the neutrally stable spherical surface . We investigate the eigensolutions of the ordinary differential equation governing the axial structure of the cartridge belt both numerically for moderate-to-small values of the stratification parameter and analytically when . At the lowest order of the expansion in powers of , the eigenmodes resemble those for classical plane layer convection, being either steady (exchange of stabilities) or, for small Prandtl number , oscillatory (overstability) with a frequency . At the next order, the axial variation of the basic state removes any plane layer degeneracies. First, the exchange of stabilities modes oscillate at a low frequency causing the short axial columns to propagate as a wave with a small angular velocity, termed slow modes. Second, the magnitudes of both the Rayleigh number and frequency of the two overstable modes, termed fast modes, split. When the slow modes that exist at large azimuthal wavenumbers make a continuous transition to the preferred fast modes at small . At all values of the critical Rayleigh number corresponds to a mode exhibiting prograde propagation, whether it be a fast or slow mode. This feature is shared by the uniform classical convective shell models, as well as Busse’s celebrated annulus model. None of them possess any stable stratification and typically are prone to easily excitable Rossby or inertial modes of convection at small . By way of contrast these structures cannot exist in our model for small due to the viscous damping in the outer thick stable region.

Copyright

Corresponding author

Email address for correspondence: andrew.soward@newcastle.ac.uk

References

Hide All
1. Al-Shamali, F. M., Heimpel, M. H. & Aurnou, J. M. 2004 Varying the spherical shell geometry in rotating thermal convection. Geophys. Astrophys. Fluid Dyn. 98, 153169.
2. Aurnou, J. M. & Olson, P. L. 2001 Strong zonal winds from thermal convection in a rotating spherical shell. Geophys. Res. Lett. 28 (13), 25572559.
3. Braginsky, S. I. 1993 MAC-oscillations of the hidden ocean of the core. J. Geomagn. Geoelectr. 45, 15171538.
4. Braginsky, S. I. & Roberts, P. H. 1995 Equations governing convection in Earth’s core and the geodynamo. Geophys. Astrophys. Fluid Dyn. 79, 197.
5. Busse, F. H. 1970a Thermal instabilities in rapidly rotating systems. J. Fluid Mech. 44, 441460.
6. Busse, F. H. 1970b Differential rotation in stellar convection zones. Astrophys. J. 159, 629639.
7. Busse, F. H. 1975 A model of the geodynamo. Geophys. J. R. Astr. Soc. 42, 437459.
8. Busse, F. H. 2002 Is low Rayleigh number convection possible in the Earth’s core? Geophys. Res. Lett. 29 (7), 1105. doi:10.1029/2001GL014597 3pp.
9. Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford, Clarendon Press.
10. Christensen, U. R. 2006 A deep dynamo generating Mercury’s magnetic field. Nature 444, 10561058.
11. Christensen, U. R. & Wicht, J. 2008 Models of magnetic field generation in partly stable planetary cores: applications to Mercury and Saturn. Icarus 196, 1634.
12. Dormy, E., Soward, A. M., Jones, C. A., Jault, D. & Cardin, P. 2004 The onset of thermal convection in rotating spherical shells. J. Fluid Mech. 501, 4370.
13. Fearn, D. R. & Loper, D. E. 1981 Compositional convection and stratification of the Earth’s core. Nature 289, 393394.
14. Greenspan, H. P. 1968 The Theory of Rotating Fluids. Cambridge University Press.
15. Jones, C. A., Kuzanyan, K. M. & Mitchell, R. H. 2009 Linear theory of compressible convection in rapidly rotating spherical shells, using the anelastic approximation. J. Fluid Mech. 634, 291319.
16. Jones, C. A., Soward, A. M. & Mussa, A. I. 2000 The onset of thermal convection in a rapidly rotating sphere. J. Fluid Mech. 405, 157179.
17. Net, M., Garcia, F. & Sánchez, J. 2008 On the onset of low-Prandtl-number convection in rotating spherical shells: non-slip boundary conditions. J. Fluid Mech. 601, 317337.
18. Roberts, P. H. 1965 On the thermal instability of a highly rotating fluid sphere. Astrophys. J. 141 (1), 240250.
19. Roberts, P. H. 1968 On the thermal instability of a rotating-fluid sphere containing heat sources. Phil. Trans. R. Soc. Lond. A 263, 93117.
20. Šimkanin, J., Brestenský, J. & Ševčík, S. 2003 Problem of the rotating magnetoconvection in variously stratified fluid layer revisited. Stud. Geophys. Geod. 47, 827845.
21. Šimkanin, J., Brestenský, J. & Ševčík, S. 2006 On hydromagnetic instabilities and the mean electromotive force in a non-uniformly stratified Earth’s core affected by viscosity. Stud. Geophys. Geod. 50, 645661.
22. Šimkanin, J., Hejda, J. & Jankovičová, D. 2009 Convection in rotating non-uniformly stratified spherical fluid shells: a systematic parameter study. Contrib. Geophys. Geod. 39 (3), 207220.
23. Soward, A. M. 1977 On the finite amplitude thermal instability of a rapidly rotating fluid sphere. Geophys. Astrophys. Fluid Dyn. 9, 1974.
24. Stanley, S. & Bloxham, J. 2004 Convective-region geometry as the cause of Uranus’ and Neptune’s unusual magnetic fields. Nature 428, 151153.
25. Stanley, S. & Bloxham, J. 2006 Numerical dynamo models of Uranus’ and Neptune’s magnetic fields. Icarus 184, 556572.
26. Stanley, S. & Glatzmaier, G. A. 2010 Dynamo models for planets other than Earth. Space Sci. Rev. 152, 617649.
27. Stanley, S., Bloxham, J., Hutchison, W. & Zuber, M. 2005 Thin shell dynamo models consistent with Mercury’s weak observed magnetic field. Earth Planet. Sci. Lett. 234, 2738.
28. Stanley, S. & Mohammadi, A. 2008 Effects of an outer thin stably stratified layer on planetary dynamos. Phys. Earth Planet. Inter. 168, 179190.
29. Starchenko, S. V., Kotelnikova, M. S. & Maslov, I. V. 2006 Marginal stability of almost adiabatic planetary convection. Geophys. Astrophys. Fluid Dyn. 100, 397427.
30. Takehiro, S. & Hayashi, Y.-Y. 1995 Boussinesq convection in rotating spherical shells – a study on the equatorial superrotation. In The Earth’s Central Part: Its Structure and Dynamics (ed. Yukutake, T. ). pp. 123156. Terra Scientific Publishing Co.
31. Takehiro, S. & Lister, J. R. 2001 Penetration of columnar convection into an outer stably stratified layer in rapidly rotating spherical fluid shells. Earth Planet. Sci. Lett. 187, 357366.
32. Takehiro, S. & Lister, J. R. 2002 Surface zonal flows induced by thermal convection trapped below a stably stratified layer in a rapidly rotating spherical shell. Geophys. Res. Lett. 29 (16), 1803. doi:10.1029/2002GL015450 4pp.
33. Takehiro, S., Yamada, M. & Hayashi, Y.-Y. 2011 Retrograde equatorial surface flows generated by thermal convection confined under a stably stratified layer in a rapidly rotating spherical shell. Geophys. Astrophys. Fluid Dyn. 105, 6181.
34. Wicht, J. & Tilgner, A. 2010 Theory and modelling of planetary dynamos. Space Sci. Rev. 152, 501542.
35. Zhang, K. & Liao, X. 2004 A new asymptotic method for the analysis of convection in a rapidly rotating sphere. J. Fluid Mech. 518, 319346.
36. Zhang, K., Liao, X. & Busse, F. H. 2007 Asymptotic solutions of convection in rapidly rotating non-slip spheres. J. Fluid Mech. 578, 371380.
37. Zhang, K. & Schubert, G. 2000 Teleconvection: remotely driven thermal convection in rotating stratified spherical layers. Science 290 (5498), 19441947.
38. Zhang, K. & Schubert, G. 2002 From penetrative convection to teleconvection. Astrophys. J. 572, 461476.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Type Description Title
PDF
Supplementary materials

Bassom et al. supplementary material
Appendices

 PDF (69 KB)
69 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed