1.
Al-Shamali, F. M., Heimpel, M. H. & Aurnou, J. M.
2004
Varying the spherical shell geometry in rotating thermal convection. Geophys. Astrophys. Fluid Dyn.
98, 153–169.
2.
Aurnou, J. M. & Olson, P. L.
2001
Strong zonal winds from thermal convection in a rotating spherical shell. Geophys. Res. Lett.
28
(13), 2557–2559.
3.
Braginsky, S. I.
1993
MAC-oscillations of the hidden ocean of the core. J. Geomagn. Geoelectr.
45, 1517–1538.
4.
Braginsky, S. I. & Roberts, P. H.
1995
Equations governing convection in Earth’s core and the geodynamo. Geophys. Astrophys. Fluid Dyn.
79, 1–97.
5.
Busse, F. H.
1970a
Thermal instabilities in rapidly rotating systems. J. Fluid Mech.
44, 441–460.
6.
Busse, F. H.
1970b
Differential rotation in stellar convection zones. Astrophys. J.
159, 629–639.
7.
Busse, F. H.
1975
A model of the geodynamo. Geophys. J. R. Astr. Soc.
42, 437–459.
8.
Busse, F. H.
2002
Is low Rayleigh number convection possible in the Earth’s core?
Geophys. Res. Lett.
29
(7), 1105. doi:10.1029/2001GL014597
.
9.
Chandrasekhar, S.
1961
Hydrodynamic and Hydromagnetic Stability. Oxford, Clarendon Press.
10.
Christensen, U. R.
2006
A deep dynamo generating Mercury’s magnetic field. Nature
444, 1056–1058.
11.
Christensen, U. R. & Wicht, J.
2008
Models of magnetic field generation in partly stable planetary cores: applications to Mercury and Saturn. Icarus
196, 16–34.
12.
Dormy, E., Soward, A. M., Jones, C. A., Jault, D. & Cardin, P.
2004
The onset of thermal convection in rotating spherical shells. J. Fluid Mech.
501, 43–70.
13.
Fearn, D. R. & Loper, D. E.
1981
Compositional convection and stratification of the Earth’s core. Nature
289, 393–394.
14.
Greenspan, H. P.
1968
The Theory of Rotating Fluids. Cambridge University Press.
15.
Jones, C. A., Kuzanyan, K. M. & Mitchell, R. H.
2009
Linear theory of compressible convection in rapidly rotating spherical shells, using the anelastic approximation. J. Fluid Mech.
634, 291–319.
16.
Jones, C. A., Soward, A. M. & Mussa, A. I.
2000
The onset of thermal convection in a rapidly rotating sphere. J. Fluid Mech.
405, 157–179.
17.
Net, M., Garcia, F. & Sánchez, J.
2008
On the onset of low-Prandtl-number convection in rotating spherical shells: non-slip boundary conditions. J. Fluid Mech.
601, 317–337.
18.
Roberts, P. H.
1965
On the thermal instability of a highly rotating fluid sphere. Astrophys. J.
141
(1), 240–250.
19.
Roberts, P. H.
1968
On the thermal instability of a rotating-fluid sphere containing heat sources. Phil. Trans. R. Soc. Lond. A
263, 93–117.
20.
Šimkanin, J., Brestenský, J. & Ševčík, S.
2003
Problem of the rotating magnetoconvection in variously stratified fluid layer revisited. Stud. Geophys. Geod.
47, 827–845.
21.
Šimkanin, J., Brestenský, J. & Ševčík, S.
2006
On hydromagnetic instabilities and the mean electromotive force in a non-uniformly stratified Earth’s core affected by viscosity. Stud. Geophys. Geod.
50, 645–661.
22.
Šimkanin, J., Hejda, J. & Jankovičová, D.
2009
Convection in rotating non-uniformly stratified spherical fluid shells: a systematic parameter study. Contrib. Geophys. Geod.
39
(3), 207–220.
23.
Soward, A. M.
1977
On the finite amplitude thermal instability of a rapidly rotating fluid sphere. Geophys. Astrophys. Fluid Dyn.
9, 19–74.
24.
Stanley, S. & Bloxham, J.
2004
Convective-region geometry as the cause of Uranus’ and Neptune’s unusual magnetic fields. Nature
428, 151–153.
25.
Stanley, S. & Bloxham, J.
2006
Numerical dynamo models of Uranus’ and Neptune’s magnetic fields. Icarus
184, 556–572.
26.
Stanley, S. & Glatzmaier, G. A.
2010
Dynamo models for planets other than Earth. Space Sci. Rev.
152, 617–649.
27.
Stanley, S., Bloxham, J., Hutchison, W. & Zuber, M.
2005
Thin shell dynamo models consistent with Mercury’s weak observed magnetic field. Earth Planet. Sci. Lett.
234, 27–38.
28.
Stanley, S. & Mohammadi, A.
2008
Effects of an outer thin stably stratified layer on planetary dynamos. Phys. Earth Planet. Inter.
168, 179–190.
29.
Starchenko, S. V., Kotelnikova, M. S. & Maslov, I. V.
2006
Marginal stability of almost adiabatic planetary convection. Geophys. Astrophys. Fluid Dyn.
100, 397–427.
30.
Takehiro, S. & Hayashi, Y.-Y.
1995
Boussinesq convection in rotating spherical shells – a study on the equatorial superrotation. In The Earth’s Central Part: Its Structure and Dynamics (ed.
Yukutake, T.
). pp. 123–156. Terra Scientific Publishing Co.
31.
Takehiro, S. & Lister, J. R.
2001
Penetration of columnar convection into an outer stably stratified layer in rapidly rotating spherical fluid shells. Earth Planet. Sci. Lett.
187, 357–366.
32.
Takehiro, S. & Lister, J. R.
2002
Surface zonal flows induced by thermal convection trapped below a stably stratified layer in a rapidly rotating spherical shell. Geophys. Res. Lett.
29
(16), 1803. doi:10.1029/2002GL015450
.
33.
Takehiro, S., Yamada, M. & Hayashi, Y.-Y.
2011
Retrograde equatorial surface flows generated by thermal convection confined under a stably stratified layer in a rapidly rotating spherical shell. Geophys. Astrophys. Fluid Dyn.
105, 61–81.
34.
Wicht, J. & Tilgner, A.
2010
Theory and modelling of planetary dynamos. Space Sci. Rev.
152, 501–542.
35.
Zhang, K. & Liao, X.
2004
A new asymptotic method for the analysis of convection in a rapidly rotating sphere. J. Fluid Mech.
518, 319–346.
36.
Zhang, K., Liao, X. & Busse, F. H.
2007
Asymptotic solutions of convection in rapidly rotating non-slip spheres. J. Fluid Mech.
578, 371–380.
37.
Zhang, K. & Schubert, G.
2000
Teleconvection: remotely driven thermal convection in rotating stratified spherical layers. Science
290
(5498), 1944–1947.
38.
Zhang, K. & Schubert, G.
2002
From penetrative convection to teleconvection. Astrophys. J.
572, 461–476.