Skip to main content Accessibility help
×
Home

Onset of global instability in low-density jets

  • Yuanhang Zhu (a1), Vikrant Gupta (a1) (a2) and Larry K. B. Li (a1)

Abstract

In low-density axisymmetric jets, the onset of global instability is known to depend on three control parameters, namely the jet-to-ambient density ratio $S$ , the initial momentum thickness $\unicode[STIX]{x1D703}_{0}$ and the Reynolds number $Re$ . For sufficiently low values of $S$ and $\unicode[STIX]{x1D703}_{0}$ , these jets bifurcate from a steady state (a fixed point) to a self-excited oscillatory state (a limit cycle) when $Re$ increases above a critical value corresponding to the Hopf point, $Re_{H}$ . In the literature, this Hopf bifurcation is often regarded as supercritical. In this experimental study, however, we find that under some conditions, there exists a hysteretic bistable region at $Re_{SN}<Re<Re_{H}$ , where $Re_{SN}$ denotes a saddle-node point. This shows that, contrary to expectations, the Hopf bifurcation can also be subcritical, which we explore by evaluating the coefficients of a truncated Landau model. The existence of subcritical bifurcations implies the potential for triggering and the need for weakly nonlinear analyses to be performed to at least fifth order if one is to be able to predict saturation and bistability. We conclude by proposing a universal scaling for $Re_{H}$ in terms of $S$ and $\unicode[STIX]{x1D703}_{0}$ . This scaling, which is insensitive to the super/subcritical nature of the bifurcations, can be used to predict the onset of self-excited oscillations, providing further evidence to support Hallberg & Strykowski’s concept (J. Fluid Mech., vol. 569, 2006, pp. 493–507) of universal global modes in low-density jets.

Copyright

Corresponding author

Email address for correspondence: larryli@ust.hk

References

Hide All
Chomaz, J. M., Huerre, P. & Redekopp, L. G. 1988 Bifurcations to local and global modes in spatially developing flows. Phys. Rev. Lett. 60 (1), 2528.
Coenen, W., Lesshafft, L., Garnaud, X. & Sevilla, A. 2017 Global instability of low-density jets. J. Fluid Mech. 820, 187207.
Coenen, W. & Sevilla, A. 2012 The structure of the absolutely unstable regions in the near field of low-density jets. J. Fluid Mech. 713, 123149.
Coenen, W., Sevilla, A. & Sánchez, A. L. 2008 Absolute instability of light jets emerging from circular injector tubes. Phys. Fluids 20 (7), 074104.
Davitian, J., Getsinger, D., Hendrickson, C. & Karagozian, A. R. 2010 Transition to global instability in transverse-jet shear layers. J. Fluid Mech. 661, 294315.
Dušek, J., Le Gal, P. & Fraunié, P. 1994 A numerical and theoretical study of the first Hopf bifurcation in a cylinder wake. J. Fluid Mech. 264, 5980.
Gopalakrishnan, E. A. & Sujith, R. I. 2015 Effect of external noise on the hysteresis characteristics of a thermoacoustic system. J. Fluid Mech. 776, 334353.
Hallberg, M. P., Srinivasan, V., Gorse, P. & Strykowski, P. J. 2007 Suppression of global modes in low-density axisymmetric jets using coflow. Phys. Fluids 19 (1), 4102.
Hallberg, M. P. & Strykowski, P. J. 2006 On the universality of global modes in low-density axisymmetric jets. J. Fluid Mech. 569, 493507.
Huerre, P. & Monkewitz, P. A. 1990 Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22 (1), 473537.
Jendoubi, S. & Strykowski, P. J. 1994 Absolute and convective instability of axisymmetric jets with external flow. Phys. Fluids 6 (9), 30003009.
Kyle, D. M. & Sreenivasan, K. R. 1993 The instability and breakdown of a round variable-density jet. J. Fluid Mech. 249, 619664.
Lesshafft, L., Huerre, P. & Sagaut, P. 2007 Frequency selection in globally unstable round jets. Phys. Fluids 19 (5), 054108.
Lesshafft, L., Huerre, P., Sagaut, P. & Terracol, M. 2006 Nonlinear global modes in hot jets. J. Fluid Mech. 554, 393409.
Lesshafft, L. & Marquet, O. 2010 Optimal velocity and density profiles for the onset of absolute instability in jets. J. Fluid Mech. 662, 398408.
Li, L. K. B. & Juniper, M. P. 2013a Lock-in and quasiperiodicity in a forced hydrodynamically self-excited jet. J. Fluid Mech. 726, 624655.
Li, L. K. B. & Juniper, M. P. 2013b Lock-in and quasiperiodicity in hydrodynamically self-excited flames: experiments and modelling. Proc. Combust. Inst. 34, 947954.
Li, L. K. B. & Juniper, M. P. 2013c Phase trapping and slipping in a forced hydrodynamically self-excited jet. J. Fluid Mech. 735, R5.
Monkewitz, P. A., Bechert, D. W., Barsikow, B. & Lehmann, B. 1990 Self-excited oscillations and mixing in a heated round jet. J. Fluid Mech. 213, 611639.
Monkewitz, P. A. & Sohn, K. 1988 Absolute instability in hot jets. AIAA J. 26 (8), 911916.
Nichols, J. W., Schmid, P. J. & Riley, J. J. 2007 Self-sustained oscillations in variable-density round jets. J. Fluid Mech. 582, 341376.
Pier, B. & Huerre, P. 2001 Nonlinear self-sustained structures and fronts in spatially developing wake flows. J. Fluid Mech. 435, 145174.
Provansal, M., Mathis, C. & Boyer, L. 1987 Bénard–von Kármán instability: transient and forced regimes. J. Fluid Mech. 182, 122.
Raghu, S. & Monkewitz, P. A. 1991 The bifurcation of a hot round jet to limit-cycle oscillations. Phys. Fluids 3 (4), 501503.
Raynal, L., Harion, J. L., Favre-Marinet, M. & Binder, G. 1996 The oscillatory instability of plane variable-density jets. Phys. Fluids 8 (4), 9931006.
Rockwell, D. & Naudascher, E. 1979 Self-sustained oscillations of impinging free shear layers. Annu. Rev. Fluid Mech. 11 (1), 6794.
Schmid, P. J. & Henningson, D. S. 2001 Stability and Transition in Shear Flows. Springer.
Sheard, G. J., Thompson, M. C. & Hourigan, K. 2004 From spheres to circular cylinders: non-axisymmetric transitions in the flow past rings. J. Fluid Mech. 506, 4578.
Sipp, D. & Lebedev, A. 2007 Global stability of base and mean flows: a general approach and its applications to cylinder and open cavity flows. J. Fluid Mech. 593, 333358.
Sreenivasan, K. R., Raghu, S. & Kyle, D. 1989 Absolute instability in variable density round jets. Exp. Fluids 7 (5), 309317.
Srinivasan, V., Hallberg, M. P. & Strykowski, P. J. 2010 Viscous linear stability of axisymmetric low-density jets: parameters influencing absolute instability. Phys. Fluids 22 (2), 024103.
Strogatz, S. H. 1994 Nonlinear Dynamics and Chaos. Perseus Books.
Zakharova, A., Vadivasova, T., Anishchenko, V., Koseska, A. & Kurths, J. 2010 Stochastic bifurcations and coherence like resonance in a self-sustained bistable noisy oscillator. Phys. Rev. E 81 (1), 011106.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed