Skip to main content Accessibility help

Onset of fully compressible convection in a rapidly rotating spherical shell

  • Shuang Liu (a1), Zhen-Hua Wan (a1), Rui Yan (a1), Chao Sun (a2) and De-Jun Sun (a1)...


The onset of thermal convection in a rapidly rotating spherical shell is studied by linear stability analysis based on the fully compressible Navier–Stokes equations. Compressibility is quantified by the number of density scale heights $N_{\unicode[STIX]{x1D70C}}$ , which measures the intensity of density stratification of the motionless, polytropic base state. The nearly adiabatic flow with polytropic index $n=1.499<n_{a}=1.5$ is considered, where $n_{a}$ is the adiabatic polytropic index. By investigating the stability of the base state with respect to the disturbance of specified wavenumber, the instability process is found to be sensitive to the Prandtl number $Pr$ and to $N_{\unicode[STIX]{x1D70C}}$ . For large $Pr$ and small $N_{\unicode[STIX]{x1D70C}}$ , the quasi-geostrophic columnar mode loses stability first; while for relatively small $Pr$ a new quasi-geostrophic compressible mode is identified, which becomes unstable first under strong density stratification. The inertial mode can also occur first for relatively small $Pr$ and a certain intensity of density stratification in the parameter range considered. Although the Rayleigh numbers $Ra$ for the onsets of the quasi-geostrophic compressible mode and columnar mode are different by several orders of magnitude, we find that they follow very similar scaling laws with the Taylor number. The critical $Ra$ for convection onset is found to be always positive, in contrast with previous results based on the widely used anelastic model that convection can occur at negative $Ra$ . By evaluating the relative magnitude of the time derivative of density perturbation in the continuity equation, we show that the anelastic approximation in the present system cannot be applied in the small- $Ra$ and large- $N_{\unicode[STIX]{x1D70C}}$ regime.


Corresponding author

Email addresses for correspondence:,


Hide All
Batchelor, G. K. 1953 The conditions for dynamical similarity of motions of a frictionless perfect-gas atmosphere. Q. J. R. Meteorol. Soc. 79 (340), 224235.10.1002/qj.49707934004
Berkoff, N. A., Kersale, E. & Tobias, S. M. 2010 Comparison of the anelastic approximation with fully compressible equations for linear magnetoconvection and magnetic buoyancy. Geophys. Astrophys. Fluid Dyn. 104 (5–6), 545563.10.1080/03091929.2010.521747
Braginsky, S. I. & Roberts, P. H. 1995 Equations governing convection in Earth’s core and the geodynamo. Geophys. Astrophys. Fluid Dyn. 79 (1–4), 197.10.1080/03091929508228992
Brown, B. P., Vasil, G. M. & Zweibel, E. G. 2012 Energy conservation and gravity waves in sound-proof treatments of stellar interiors. Part I. Anelastic approximations. Astrophys. J. 756 (2), 109.10.1088/0004-637X/756/2/109
Busse, F. H. 1970 Thermal instabilities in rapidly rotating systems. J. Fluid Mech. 44 (3), 441460.10.1017/S0022112070001921
Busse, F. H. & Hood, L. L. 1982 Differential rotation driven by convection in a rapidly rotating annulus. Geophys. Astrophys. Fluid Dyn. 21 (1–2), 5974.10.1080/03091928208209005
Busse, F. H. & Simitev, R. 2004 Inertial convection in rotating fluid spheres. J. Fluid Mech. 498, 2330.10.1017/S0022112003006943
Busse, F. H., Zhang, K. & Liao, X. 2005 On slow inertial waves in the solar convection zone. Astrophys. J. Lett. 631 (2), L171L174.10.1086/497300
Cai, T., Chan, K. L. & Deng, L. 2011 Numerical simulation of core convection by a multi-layer semi-implicit spherical spectral method. J. Comput. Phys. 230 (24), 86988712.10.1016/
Calkins, M. A., Julien, K. & Marti, P. 2015a The breakdown of the anelastic approximation in rotating compressible convection: implications for astrophysical systems. Proc. R. Soc. Lond. A 471 (2175), 20140689.10.1098/rspa.2014.0689
Calkins, M. A., Julien, K. & Marti, P. 2015b Onset of rotating and non-rotating convection in compressible and anelastic ideal gases. Geophys. Astrophys. Fluid Dyn. 109 (4), 422449.10.1080/03091929.2014.987670
Chan, K. L., Mayr, H. G., Mengel, J. G. & Harris, I. 1994 A ‘stratified’ spectral model for stable and convective atmospheres. J. Comput. Phys. 113 (2), 165176.10.1006/jcph.1994.1128
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Clarendon Press.
Chenoweth, D. R. & Paolucci, S. 1986 Natural convection in an enclosed vertical air layer with large horizontal temperature differences. J. Fluid Mech. 169, 173210.10.1017/S0022112086000587
Dormy, E., Soward, A. M., Jones, C. A., Jault, D. & Cardin, P. 2004 The onset of thermal convection in rotating spherical shells. J. Fluid Mech. 501, 4370.10.1017/S0022112003007316
Drew, S. J., Jones, C. A. & Zhang, K. 1995 Onset of convection in a rapidly rotating compressible fluid spherical shell. Geophys. Astrophys. Fluid Dyn. 80 (3–4), 241254.10.1080/03091929508228957
Durran, D. R. 2008 A physically motivated approach for filtering acoustic waves from the equations governing compressible stratified flow. J. Fluid Mech. 601, 365379.10.1017/S0022112008000608
Gilman, P. A. & Glatzmaier, G. A. 1981 Compressible convection in a rotating spherical shell. I. Anelastic equations. Astrophys. J. Suppl. 45, 335349.10.1086/190714
Glatzmaier, G. A. & Gilman, P. A. 1981a Compressible convection in a rotating spherical shell. II. A linear anelastic model. Astrophys. J. Suppl. 45, 351380.10.1086/190715
Glatzmaier, G. A. & Gilman, P. A. 1981b Compressible convection in a rotating spherical shell. IV. Effects of viscosity, conductivity, boundary conditions, and zone depth. Astrophys. J. Suppl. 47, 103115.10.1086/190753
Guillot, T. 1999a A comparison of the interiors of Jupiter and Saturn. Planet. Space Sci. 47 (10–11), 11831200.10.1016/S0032-0633(99)00043-4
Guillot, T. 1999b Interiors of giant planets inside and outside the solar system. Science 286 (5437), 7277.10.1126/science.286.5437.72
Jones, C. A., Boronski, P., Brun, A. S., Glatzmaier, G. A., Gastine, T., Miesch, M. S. & Wicht, J. 2011 Anelastic convection-driven dynamo benchmarks. Icarus 216 (1), 120135.10.1016/j.icarus.2011.08.014
Jones, C. A., Kuzanyan, K. M. & Mitchell, R. H. 2009 Linear theory of compressible convection in rapidly rotating spherical shells, using the anelastic approximation. J. Fluid Mech. 634, 291319.10.1017/S0022112009007253
Jones, C. A., Roberts, P. H. & Galloway, D. J. 1990 Compressible convection in the presence of rotation and a magnetic field. Geophys. Astrophys. Fluid Dyn. 53 (3), 145182.10.1080/03091929008208926
Jones, C. A., Rotvig, J. & Abdulrahman, A. 2003 Multiple jets and zonal flow on Jupiter. Geophys. Res. Lett. 30 (14), 1731.10.1029/2003GL016980
Jones, C. A., Soward, A. M. & Mussa, A. I. 2000 The onset of thermal convection in a rapidly rotating sphere. J. Fluid Mech. 405, 157179.10.1017/S0022112099007235
Lecoanet, D., Brown, B. P., Zweibel, E. G., Burns, K. J., Oishi, J. S. & Vasil, G. M. 2014 Conduction in low Mach number flows. I. Linear and weakly nonlinear regimes. Astrophys. J. 797 (2), 94.10.1088/0004-637X/797/2/94
Lund, T. S. & Fritts, D. C. 2012 Numerical simulation of gravity wave breaking in the lower thermosphere. J. Geophys. Res. 117 (D21), D21105.10.1029/2012JD017536
Ogura, Y. & Phillips, N. A. 1962 Scale analysis of deep and shallow convection in the atmosphere. J. Atmos. Sci. 19 (2), 173179.10.1175/1520-0469(1962)019<0173:SAODAS>2.0.CO;2
Proudman, J. 1916 On the motion of solids in a liquid possessing vorticity. Proc. R. Soc. Lond. A 92 (642), 408424.10.1098/rspa.1916.0026
Roberts, P. H. 1968 On the thermal instability of a rotating-fluid sphere containing heat sources. Phil. Trans. R. Soc. Lond. A 263 (1136), 93117.10.1098/rsta.1968.0007
Rotvig, J. & Jones, C. A. 2006 Multiple jets and bursting in the rapidly rotating convecting two-dimensional annulus model with nearly plane-parallel boundaries. J. Fluid Mech. 567, 117140.10.1017/S0022112006002254
Sánchez, J., Garcia, F. & Net, M. 2016a Critical torsional modes of convection in rotating fluid spheres at high Taylor numbers. J. Fluid Mech. 791, R1.10.1017/jfm.2016.52
Sánchez, J., García, F. & Net, M. 2016b Radial collocation methods for the onset of convection in rotating spheres. J. Comput. Phys. 308, 273288.10.1016/
Spiegel, E. A. & Veronis, G. 1960 On the Boussinesq approximation for a compressible fluid. Astrophys. J. 131, 442447.10.1086/146849
Takehiro, S. 2008 Physical interpretation of spiralling-columnar convection in a rapidly rotating annulus with radial propagation properties of Rossby waves. J. Fluid Mech. 614, 6786.10.1017/S0022112008003194
Takehiro, S. 2010 Kinetic energy budget analysis of spiraling columnar critical convection in a rapidly rotating spherical shell. Fluid Dyn. Res. 42 (5), 055501.10.1088/0169-5983/42/5/055501
Taylor, G. I. 1921 Experiments with rotating fluids. Proc. R. Soc. Lond. A 100 (703), 114121.10.1098/rspa.1921.0075
Trefethen, L. N. 2000 Spectral Methods in MATLAB. SIAM.10.1137/1.9780898719598
Verhoeven, J. & Glatzmaier, G. A. 2018 Validity of sound-proof approaches in rapidly-rotating compressible convection: marginal stability versus turbulence. Geophys. Astrophys. Fluid Dyn. 112 (1), 3661.10.1080/03091929.2017.1380800
Verhoeven, J., Wiesehöfer, T. & Stellmach, S. 2015 Anelastic versus fully compressible turbulent Rayleigh–Bénard convection. Astrophys. J. 805 (1), 62.10.1088/0004-637X/805/1/62
Yano, J.-I. 1992 Asymptotic theory of thermal convection in rapidly rotating systems. J. Fluid Mech. 243, 103131.10.1017/S0022112092002659
Zhang, K. 1992 Spiralling columnar convection in rapidly rotating spherical fluid shells. J. Fluid Mech. 236, 535556.10.1017/S0022112092001526
Zhang, K. 1994 On coupling between the Poincaré equation and the heat equation. J. Fluid Mech. 268, 211229.10.1017/S0022112094001321
Zhang, K. 1995 On coupling between the Poincaré equation and the heat equation: non-slip boundary condition. J. Fluid Mech. 284, 239256.10.1017/S0022112095000346
Zhang, K. & Busse, F. H. 1987 On the onset of convection in rotating spherical shells. Geophys. Astrophys. Fluid Dyn. 39 (3), 119147.10.1080/03091928708208809
Zhang, K., Lam, K. & Kong, D. 2017 Asymptotic theory for torsional convection in rotating fluid spheres. J. Fluid Mech. 813, R2.10.1017/jfm.2017.9
Zhang, K. & Liao, X. 2017 Theory and Modeling of Rotating Fluids: Convection, Inertial Waves and Precession. Cambridge University Press.10.1017/9781139024853
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed