Skip to main content Accessibility help
×
Home

On unsteady boundary-layer separation in supersonic flow. Part 1. Upstream moving separation point

  • A. I. RUBAN (a1), D. ARAKI (a2), R. YAPALPARVI (a3) and J. S. B. GAJJAR (a2)

Abstract

This study is concerned with the boundary-layer separation from a rigid body surface in unsteady two-dimensional laminar supersonic flow. The separation is assumed to be provoked by a shock wave impinging upon the boundary layer at a point that moves with speed Vsh along the body surface. The strength of the shock and its speed Vsh are allowed to vary with time t, but not too fast, namely, we assume that the characteristic time scale tRe−1/2/Vw2. Here Re denotes the Reynolds number, and Vw = −Vsh is wall velocity referred to the gas velocity V in the free stream. We show that under this assumption the flow in the region of interaction between the shock and boundary layer may be treated as quasi-steady if it is considered in the coordinate frame moving with the shock. We start with the flow regime when Vw = O(Re−1/8). In this case, the interaction between the shock and boundary layer is described by classical triple-deck theory. The main modification to the usual triple-deck formulation is that in the moving frame the body surface is no longer stationary; it moves with the speed Vw = −Vsh. The corresponding solutions of the triple-deck equations have been constructed numerically. For this purpose, we use a numerical technique based on finite differencing along the streamwise direction and Chebyshev collocation in the direction normal to the body surface. In the second part of the paper, we assume that 1 ≫ VwO(Re−1/8), and concentrate our attention on the self-induced separation of the boundary layer. Assuming, as before, that the Reynolds number, Re, is large, the method of matched asymptotic expansions is used to construct the corresponding solutions of the Navier–Stokes equations in a vicinity of the separation point.

Copyright

Corresponding author

Email address for correspondence: a.ruban@imperial.ac.uk

References

Hide All
Araki, D. 2006 Boundary-layer separation on a moving surface in supersonic flow. PhD thesis, The University of Manchester.
Battam, N. W., Gorounov, D. G., Korolev, G. L. & Ruban, A. I. 2004 Shock wave interaction with a viscous wake in supersonic flow. J. Fluid Mech. 504, 301341.
Blasius, H. 1908 Grenzschichten in flüssigkeiten mit kleiner reibung. Z. Math. Phys. 56 (1), 137 (translation in NACA TM 1256).
Cebeci, T. 1979 The laminar boundary layer on a circular cylinder started impulsively from rest. J. Comput Phys. 31, 153172.
Cebeci, T. 1982 Unsteady separation. In Numerical and Physical Aspects of Aerodynamic Flows (ed. Cebeci, T.), pp. 265278. Springer.
Cebeci, T. 1986 Unsteady boundary layers with an intelligent numerical scheme. J. Fluid Mech. 163, 129140.
Collins, W. M. & Dennis, S. C. R. 1973 a Flow past an impulsively started cylinder. J. Fluid Mech. 60, 105127.
Collins, W. M. & Dennis, S. C. R. 1973 b The initial flow past an impulsively started circular cylinder. Q. J. Mech. Appl. Maths 26, 5375.
Cowley, S. J. 1983 Computer extension and analytic continuation of Blasius' expansion for impulsive flow past a circular cylinder. J. Fluid Mech. 135, 389405.
Degani, A. T., Li, Q. & Walker, J. D. A. 1996 Unsteady separation from the leading edge of a thin airfoil. Phys. Fluids 8 (3), 704714.
van Dommelen, L. L. & Shen, S. F. 1980 The spontaneous generation of the singularity in a separating laminar boundary layer. J. Comput. Phys. 38 (2), 125140.
van Dommelen, L. L. & Shen, S. F. 1982 The genesis of separation. In Numerical and Physical Aspects of Aerodynamic Flows (ed. Cebeci, T.), pp. 293311. Springer.
van Dommelen, L. L. & Shen, S. F. 1983 An unsteady interactive separation process. AIAA J. 21 (3), 358362.
Elliott, J. W., Smith, F. T. & Cowley, S. J. 1983 Breakdown of boundary layers: (i) on moving surfaces; (ii) in semi-similar unsteady flow; (iii) in fully unsteady flow. Geophys. Astrophys. Fluid Dyn. 25, 77138.
Goldstein, S. 1948 On laminar boundary-layer flow near a position of separation. Q. J. Mech. Appl. Maths 1 (1), 4369.
Goldstein, S. & Rosenhead, L. N. 1936 Boundary layer growth. Proc. Camb. Phil. Soc. 32, 392401.
Hartree, D. R. 1939 A solution of the laminar boundary-layer equation for retarded flow. Aero. Res. Coun. Rep. and Memo. 2426 (issued in 1949).
Howarth, L. 1938 On the solution of the laminar boundary layer equations. Proc. R. Soc. Lond. A 164, 547579.
Kaplun, S. 1967 Mechanics and Singular Perturbations: A Collection of Papers. Academic.
Korolev, G. L., Gajjar, J. S. B. & Ruban, A. I. 2002 Once again on the supersonic flow separation near a corner. J. Fluid Mech. 463, 173199.
Koromilas, C. A. & Telionis, D. P. 1980 Unsteady laminar separation: an experimental study. J. Fluid Mech. 97 (2), 347384.
Landau, L. D. & Lifshitz, E. M. 1944 Mechanics of Continuous Media. Gostekhizdat.
Lighthill, M. J. 1953 On boundary layers and upstream influence. II. Supersonic flows without separation. Proc. R. Soc. Lond. A 217, 478507.
Ludwig, G. R. 1964 An experimental investigation of laminar separation from a moving wall. AIAA Paper 64-6.
Messiter, A. F. 1970 Boundary-layer flow near the trailing edge of a flat plate. SIAM J. Appl. Math. 18 (1), 241257.
Moore, F. K. 1958 On the separation of the unsteady laminar boundary layer. In Boundary Layer Research (ed. Görtler, H.), pp. 296311. Springer.
Nakayama, Y. 1988 Visualized Flow. Fluid Motion in Basic and Engineering Situations Revealed by Flow Visualization. Compiled by the Japan Society of Mechanical Engineers. Pergamon Press.
Neiland, V. Y. 1969 Theory of laminar boundary layer separation in supersonic flow. Izv. Akad. Nauk SSSR, Mech. Zhidk. Gaza 53–57.
Peridier, V. J., Smith, F. T. & Walker, J. D. A. 1991 Vortex-induced boundary-layer separation. Part 1. The unsteady limit problem Re → ∞. J. Fluid Mech. 232, 99131.
Prandtl, L. 1904 Über flüssigkeitsbewegung bei sehr kleiner Reibung. In Verh. III. Intern. Math. Kongr., Heidelberg, pp. 484491. Teubner, 1905.
Proudman, I. & Johnson, K. 1962 Boundary-layer growth near a rear stagnation point. J. Fluid Mech. 12, 161168.
Puhak, R. I., Degani, A. T. & Walker, J. D. A. 1995 Unsteady separation and heat transfer upstream of obstacles. J. Fluid Mech. 305, 127.
Robins, A. J. & Howarth, J. A. 1972 Boundary-layer development at a two-dimensional rear stagnation point. J. Fluid Mech. 56, 161171.
Rott, N. 1956 Unsteady viscous flow in the vicinity of a stagnation point. Q. J. Appl. Math. 13, 444451.
Sears, W. R. 1956 Some recent developments in airfoil theory. J. Aeronaut. Sci. 23 (5), 490499.
Stewartson, K. 1969 On the flow near the trailing edge of a flat plate. Mathematika 16 (1), 106121.
Stewartson, K. & Williams, P. G. 1969 Self-induced separation. Proc. R. Soc. Lond. A 312, 181206.
Sychev, V. V., Ruban, A. I., Sychev, V. V. & Korolev, G. L. 1998 Asymptotic Theory of Separated Flows. Cambridge University Press.
Sychev, V. V. 1972 Laminar separation. Mekh. Zhid. Gaza, No. 3, 47–59 (translation in Fluid Dyn. 7 (3), 407417).
Sychev, V. V. 1978 Breakdown of plane laminar wake. Uch. Zap. TsAGI 9 (6), 916.
Sychev, V. V. 1979 Asymptotic theory of nonstationary separation. Mekh. Zhid. Gaza, No. 6, 21–32 (translation in Fluid Dyn. 14 (6), 829838).
Sychev, V. V. 1980 On certain singularities in solutions of the boundary-layer equations on a moving surface. Prikl. Mat. Mekh. 44 (5), 831838 (translation in J. Appl. Math. Mech. 44 (5), 587–591).
Sychev, V. V. 1984 On the asymptotic theory of laminar separation from a moving surface. Prikl. Mat. Mekh. 48 (2), 247253 (translation in J. Appl. Math. Mech. 48 (2), 171–176).
Sychev, V. V. 1987 Analytical solution of the problem of flow near the boundary-layer separation point on a moving wall. Prikl. Mat. Mekh. 51 (3), 519521 (translation in J. Appl. Math. Mech. 51 (3), 405–407).
Telionis, D. P. & Tsahalis, D. T. 1974 Unsteady laminar separation over impulsively moved cylinders. Acta Astronautica 1, 14871505.
Telionis, D. P. & Werle, M. J. 1973 Boundary layer separation from moving boundaries. J. Appl. Mech. 95, 369374.
Wang, K. C. 1979 Unsteady boundary layer separation. Tech. Rep. MML TR 79-16C. Martin Marietta Laboratory, Baltimore, Maryland, USA.
Wang, K. C. 1982 On the current controversy about unsteady separation. In Numerical and Physical Aspects of Aerodynamic Flows (ed. Cebeci, T.), pp. 279291. Springer.
Wundt, H. 1955 Wachstum der laminaren Grenzchicht an schräg angeströmten Zylinder bei Anfahrt aus der Ruhe. Ing.-Arch 23, 212230.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

On unsteady boundary-layer separation in supersonic flow. Part 1. Upstream moving separation point

  • A. I. RUBAN (a1), D. ARAKI (a2), R. YAPALPARVI (a3) and J. S. B. GAJJAR (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed