Skip to main content Accessibility help

On universal features of the turbulent cascade in terms of non-equilibrium thermodynamics

  • Nico Reinke (a1) (a2), André Fuchs (a1) (a2), Daniel Nickelsen (a1) (a3) (a4) and Joachim Peinke (a1) (a2)


Features of the turbulent cascade are investigated for various datasets from three different turbulent flows, namely free jets as well as wake flows of a regular grid and a cylinder. The analysis is focused on the question as to whether fully developed turbulent flows show universal small-scale features. Two approaches are used to answer this question. First, two-point statistics, namely structure functions of longitudinal velocity increments, and, second, joint multiscale statistics of these velocity increments are analysed. The joint multiscale characterisation encompasses the whole cascade in one joint probability density function. On the basis of the datasets, evidence of the Markov property for the turbulent cascade is shown, which corresponds to a three-point closure that reduces the joint multiscale statistics to simple conditional probability density functions (cPDFs). The cPDFs are described by the Fokker–Planck equation in scale and its Kramers–Moyal coefficients (KMCs). The KMCs are obtained by a self-consistent optimisation procedure from the measured data and result in a Fokker–Planck equation for each dataset. Knowledge of these stochastic cascade equations enables one to make use of the concepts of non-equilibrium thermodynamics and thus to determine the entropy production along individual cascade trajectories. In addition to this new concept, it is shown that the local entropy production is nearly perfectly balanced for all datasets by the integral fluctuation theorem (IFT). Thus, the validity of the IFT can be taken as a new law of the turbulent cascade and at the same time independently confirms that the physics of the turbulent cascade is a memoryless Markov process in scale. The IFT is taken as a new tool to prove the optimal functional form of the Fokker–Planck equations and subsequently to investigate the question of universality of small-scale turbulence in the datasets. The results of our analysis show that the turbulent cascade contains universal and non-universal features. We identify small-scale intermittency as a universality breaking feature. We conclude that specific turbulent flows have their own particular multiscale cascades, in other words, their own stochastic fingerprints.


Corresponding author

Email address for correspondence:


Hide All
Arneodo, A., Baudet, C., Belin, F., Benzi, R., Castaing, B., Chabaud, B., Chavarria, R., Ciliberto, S., Camussi, R., Chillá, F., Dubrulle, B., Gagne, Y., Hebral, B., Herweijer, J., Marchand, M., Maurer, J., Muzy, J. F., Naert, A., Noullez, A., Peinke, J., Roux, F., Tabeling, P., van de Water, W. & Willaime, H. 1996 Structure functions in turbulence, in various flow configurations, at Reynolds number between 30 and 5000, using extended self-similarity. Europhys. Lett. 34 (6), 411416.
Arneodo, A., Muzy, J. F. & Roux, S. G. 1997 Experimental anaylsis of self-similarity and random cascade process: application to fully developed turbulence data. J. Phys. II 7, 363370.
Aronson, D. & Löfdahl, L. 1993 The plane wake of a cylinder: measurements and inferences on turbulence modeling. Phys. Fluids A 5, 14331437.
Batchelor, G. K. 1953 The Theory of Homogeneous Turbulence. Cambridge Science Classic.
Benzi, R., Biferale, L., Ciliberto, S., Struglia, M. V. & Tripiccione, R. 1996 Generalized scaling in fully developed turbulence. Physica D 96 (1–4), 162181.
Benzi, R., Ciliberto, S., Tripiccione, R., Baudet, C., Massaioli, F. & Succi, S. 1993 Extended self-similarity in turbulent flows. Phys. Rev. E 48, R29R32.
Castaing, B. & Dubrulle, B. 1995 Fully developed turbulence: a unifying point of view. J. Phys. II 5, 895899.
Chanal, O., Chabaud, B., Castaing, B. & Hébral, B. 2000 Intermittency in a turbulent low temperature gaseous helium jet. Eur. Phys. J. B 17 (2), 309317.
Clay2000 Millennium problems, Clay Mathematics Institute
Davidson, P. A. 2004 Turbulence: an Introduction for Scientists and Engineers. Oxford University Press.
Davoudi, J., Tabar, M. & Rahimi, R. 2000 Multiscale correlation functions in strong turbulence. Phys. Rev. E 61 (6).
Dubrulle, B. 2000 Finite size scale invariance. Eur. Phys. J. B 14, 757771.
Einstein, A. 1905 Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 322 (8), 549560.
Feller, W. 1968 An Introduction to Probability Theory and Its Applications, vol. 1. Wiley.
Friedrich, R. & Peinke, J. 1997a Description of a turbulent cascade by a Fokker–Planck equation. Phys. Rev. Lett. 78, 863.
Friedrich, R. & Peinke, J. 1997b Statistical properties of a turbulent cascade. Physica D 102, 147.
Friedrich, R. & Peinke, J. 2009 Fluid dynamics, turbulence. In Encyclopedia of Complexity and Systems Science (ed. Meyers, R. A.), pp. 36423661. Springer.
Friedrich, R., Peinke, J. & Naert, A. 1997 A new approach to characterize disordered structures. Z. Naturforsch. 52a, 588592.
Friedrich, R., Peinke, J., Sahimi, M., Tabar, M. & Rahimi, R. 2011 Approaching complexity by stochastic processes: from biological systems to turbulence. Phys. Rep. 506, 87162.
Friedrich, R., Zeller, J. & Peinke, J. 1998 A note on three-point statistics of velocity increments in turbulence. Europhys. Lett. 41 (2), 153158.
Frisch, U. 2001 Turbulence: the Legacy of A. N. Kolmogorov. Cambridge University Press.
Gagne, Y., Marchand, M. & Castaing, B. 1994 Conditional velocity pdf in 3-D turbulence. J. Phys. II 4 (1), 18.
Gledzer, E. 1997 On the Taylor hypothesis corrections for measured energy spectra of turbulence. Physica D 104, 163183.
Gottschall, Julia & Peinke, Joachim 2008 On the definition and handling of different drift and diffusion estimates. New J. Phys. 10 (8), 083034.
Grauer, R., Homann, H. & Jean-Francois, P. 2012 Longitudinal and transverse structure functions in high-Reynolds-number turbulence. New J. Phys. 14 (6), 063016.
Gylfason, A. & Warhaft, Z. 2004 On higher order passive scalar structure functions in grid turbulence. Phys. Fluids 16, 40124019.
Honisch, C. & Friedrich, R. 2011 Estimation of Kramers–Moyal coefficients at low sampling rates. Phys. Rev. E 83, 066701.
Hurst, D. & Vassilicos, J. C. 2007 Scalings and decay of fractal-generated turbulence. Phys. Fluids 19 (3).
Keylock, C. J., Stresing, R. & Peinke, J. 2015 Gradual wavelet reconstruction of the velocity increments for turbulent wakes. Phys. Fluids 27 (2).
Kleinhans, D., Friedrich, R., Nawroth, A. P. & Peinke, J. 2005 An iterative procedure for the estimation of drift and diffusion coefficients of Langevin processes. Phys. Lett. A 346, 4246.
Kolmogorov, A. N. 1941 Dissipation of energy in locally isotropic turbulence. Dokl. Akad. SSSR 32, 1618.
Kolmogorov, A. N. 1962 A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13, 8285.
Kuczaj, A. K., Geurts, B. J. & McComb, W. D. 2006 Nonlocal modulation of the energy cascade in broadband-forced turbulence. Phys. Rev. E 74, 016306.
Laval, J.-P., Dubrulle, B. & Nazarenko, S. 2001 Nonlocality and intermittency in three-dimensional turbulence. Phys. Fluids 13, 1995.
Lemons, D. S. 1997 Paul Langevin’s 1908 paper ‘On the Theory of Brownian Motion’ (‘Sur la théorie du mouvement brownien,’ C. R. Acad. Sci. (Paris) 146, 530–533 (1908)). Am. J. Phys. 65 (11), 1079.
Lin, C. C. 1953 On Taylor’s hypothesis and the acceleration terms in the Navier–Stokes equation. Q. Appl. Maths 10 (4), 295306.
Lück, St., Renner, Ch., Peinke, J. & Friedrich, R. 2006 The Markov–Einstein coherence length – a new meaning for the Taylor length in turbulence. Phys. Lett. A 359 (5), 335338.
Lumley, J. L. 1965 Interpretation of time spectra measured in high intensity shear flows. Phys. Fluids 8 (6), 10561062.
Lundgren, T. S. 1967 Distribution functions in the statistical theory of turbulence. Phys. Fluids 10 (5), 969975.
L’vov, V. & Procaccia, I. 1996 Fusion rules in turbulent systems with flux equilibrium. Phys. Rev. Lett. 76, 28982901.
Marcq, P. & Naert, A. 2001 A Langevin equation for turbulent velocity increments. Phys. Fluids 13, 25902595.
Melius, M. S., Tutkun, M. & Bayoán, C. R. 2014 Identification of Markov process within a wind turbine array boundary layer. J. Renew. Sustain. Energy 6 (2).
Monin, A. S. 1967 Equations of turbulent motion. J. Appl. Math. Mech. 31 (6), 10571068.
Monin, A. S., Iaglom, A. M. & Lumley, J. L. 2007 Statistical Fluid Mechanics: Mechanics of Turbulence, vol. 1. Courier Corporation.
Murzyn, F. & Bélorgey, M. 2005 Experimental investigation of the grid-generated turbulence features in a free surface flow. Exp. Therm. Fluid Sci. 29 (8), 925935.
Mydlarski, L. & Warhaft, Z. 1996 On the onset of high-Reynolds-number grid-generated wind tunnel turbulence. J. Fluid Mech. 320, 331368.
Naert, A., Friedrich, R. & Peinke, J. 1997 Fokker–Planck equation for the energy cascade in turbulence. Phys. Rev. E 56 (6), 67196722.
Nagata, K., Sakai, Y., Inaba, T., Suzuki, H., Terashima, O. & Suzuki, H. 2013 Turbulence structure and turbulence kinetic energy transport in multiscale/fractal-generated turbulence. Phys. Fluids 25 (6).
Nawroth, A. P., Peinke, J., Kleinhans, D. & Friedrich, R. 2007 Improved estimation of Fokker–Planck equations through optimisation. Phys. Rev. E 76, 056102.
Nelkin, M. 1992 In what sense is turbulence an unsolved problem? Science 255 (5044), 566570.
Nickelsen, D. 2017 Master equation for She–Leveque scaling and its classification in terms of other Markov models of developed turbulence. J. Stat. Mech. 2017 (7), 073209.
Nickelsen, D. & Engel, A. 2013 Probing small-scale intermittency with a fluctuation theorem. Phys. Rev. Lett. 110, 214501.
Novikov, E. A. 1994 Infinitely divisible distributions in turbulence. Phy. Rev. E (R) 50, R3303R3305.
Pinton, J. F. & Labbé, R. 1994 Correction to the Taylor hypothesis in swirling flows. J. Phys. II 4 (9), 14611468.
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.
Reinke, N., Fuchs, A., Hölling, M. & Peinke, J. 2014 Stochastic analysis of a fractal grid wake. Progress in Turbulence VI, Proceedings of the iTi Conference on Turbulence 2014, Springer Proceedings in Physics, vol. 6, pp. 165177.
Reinke, N., Nickelsen, D., Engel, A. & Peinke, J. 2016 Application of an integral fluctuation theorem to turbulent flows. Springer Proceedings in Physics, vol. 165, pp. 1925.
Renner, C.2002 Markowanalysen stochastisch fluktuierender Zeitserien. PhD thesis, Carl von Ossietzky Universität Oldenburg.
Renner, C., Peinke, J. & Friedrich, R. 2001 Experimental indications for Markov properties of small-scale turbulence. J. Fluid Mech. 433, 383409.
Renner, Ch., Peinke, J. & Friedrich, R. 2002a Experimental indications for Markovproperties of small scale turbulence. PAMM 1 (1), 462463.
Renner, C., Peinke, J., Friedrich, R., Chanal, O. & Chabaud, B. 2002b Universality of small scale turbulence. Phys. Rev. Lett. 89, 124502.
Risken, H. 1984 The Fokker–Planck Equation. Springer.
Seifert, U. 2005 Entropy production along a stochastic trajectory and an integral fluctuation theorem. Phys. Rev. Lett. 95 (4), 040602.
Seifert, U. 2012 Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 75 (12), 126001.
Sekimoto, K. 1998 Langevin equation and thermodynamics. Progr. Theoret. Phys. Suppl. 130, 1727.
She, Z.-S. & Waymire, E. C. 1995 Quantized energy cascade and log-Poisson statistics in fully developed turbulence. Phys. Rev. Lett. 94, 262899.
Siefert, M. & Peinke, J. 2004 Different cascade speeds for longitudinal and transverse velocity increments of small-scale turbulence. Phys. Rev. E 70, 015302(R).
Siefert, M. & Peinke, J. 2006 Joint multi-scale statistics of longitudinal and transversal increments in small-scale wake turbulence. J. Turbul. 7, N50.
Sinhuber, M.2015 On the scales of turbulent motion at high Reynolds numbers, PhD thesis, Georg-August-Universität Göttingen.
Sinhuber, M., Bewley, G. O. & Bodenschatz, E. 2017 Dissipative effects on inertial-range statistics at high Reynolds numbers. Phys. Rev. Lett. 119, 134502.
Stresing, R., Kleinhans, D., Friedrich, R. & Peinke, J. 2012 Publisher’s note: different methods to estimate the Einstein–Markov coherence length in turbulence (Phys. Rev. E 83 046319 (2011)). Phys. Rev. E 85, 029907.
Stresing, R. & Peinke, J. 2010 Towards a stochastic multi-point description of turbulence. New J. Phys. 12 (10), 103046.
Stresing, R., Peinke, J., Seoud, R. E. & Vassilicos, J. C. 2010 Defining a new class of turbulent flows. Phys. Rev. Lett. 104, 194501.
Taylor, G. I. 1938 The spectrum of turbulence. Proc. R. Soc. Lond. A 164 (919), 476490.
Tong, C. & Warhaft, Z. 1995 Passive scalar dispersion and mixing in a turbulent jet. J. Fluid Mech. 292, 138.
Tutkun, M. & Mydlarski, L. 2004 Markovian properties of passive scalar increments in grid-generated turbulence. New J. Phys. 6 (1), 49.
Valente, P. C. & Vassilicos, J. C. 2012 Universal dissipation scaling for nonequilibrium turbulence. Phys. Rev. Lett. 108, 214503.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed