Skip to main content Accessibility help
×
Home

On the universal trends in the noise reduction due to wavy leading edges in aerofoil–vortex interaction

  • Jacob M. Turner (a1) and Jae Wook Kim (a1)

Abstract

Existing studies suggest that wavy leading edges (WLEs) offer substantial reduction of broadband noise generated by an aerofoil undergoing upstream vortical disturbances. In this context, there are two universal trends in the frequency spectra of the noise reduction which have been observed and reported to date: (i) no significant reduction at low frequencies followed by (ii) a rapid growth of the noise reduction that persists in the medium-to-high frequency range. These trends are known to be insensitive to the aerofoil type and flow condition used. This paper aims to provide comprehensive understandings as to how these universal trends are formed and what the major drivers are. The current work is based on very-high-resolution numerical simulations of a semi-infinite flat-plate aerofoil impinged by a prescribed divergence-free vortex in an inviscid base flow at zero incidence angle, continued from recent work by the authors (Turner & Kim, J. Fluid Mech., vol. 811, 2017, pp. 582–611). One of the most significant findings in the current work is that the noise source distribution on the aerofoil surface becomes entirely two-dimensional (highly non-uniform in the spanwise direction as well as streamwise) at high frequencies when the WLE is involved. Also, the sources downstream of the LE make crucial contributions to creating the universal trends across all frequencies. These findings contradict the conventional LE-focused one-dimensional source analysis that has widely been accepted for all frequencies. The current study suggests that the universal trends in the noise-reduction spectra can be properly understood by taking the downstream source contributions into account, in terms of both magnitude and phase variations. After including the downstream sources, it is shown in this paper that the first universal trend is due to the conservation of total (surface integrated) source energy at low frequencies. The surface-integrated source magnitude that decreases faster with the WLE correlates very well with the noise-reduction spectrum at medium frequencies. In the meantime, the high-frequency noise reduction is driven almost entirely by destructive phase interference that increases rapidly and consistently with frequency, explaining the second universal trend.

Copyright

Corresponding author

Email address for correspondence: j.w.kim@soton.ac.uk

References

Hide All
Agrawal, B. R. & Sharma, A. 2016 Numerical analysis of aerodynamic noise mitigation via leading edge serrations for a rod-airfoil configuration. Intl J. Aeroacoust. 25 (8), 734756.10.1177/1475472X16672322
Amiet, R. K. 1975 Acoustic radiation from an airfoil in a turbulent stream. J. Sound Vib. 41, 407420.
Ayton, L. J. & Kim, J. W. 2018 An analytic solution of the noise generated by gust-aerofoil interaction for plates with serrated leading edges. J. Fluid Mech. 853, 515536.
Biedermann, T. M., Chong, T. P., Kameier, F. & Paschereit, C. O. 2017 Statistical-empirical modeling of airfoil noise subjected to leading-edge serrations. AIAA J. 55 (9), 31283142.10.2514/1.J055633
Blandeau, V. P., Joseph, P. F., Jenkins, G. & Powles, C. J. 2011 Comparison of sound power radiation from isolated airfoils and cascades in turbulent flow. J. Acoust. Soc. Am. 129 (6), 35213530.10.1121/1.3569706
Chaitanya, P., Joseph, P., Narayanan, S., Vanderwel, C., Turner, J., Kim, J. W. & Ganapathisubramani, B. 2017 Performance and mechanism of sinusoidal leading edge serrations for the reduction of turbulence-aerofoil interaction noise. J. Fluid Mech. 818, 435464.
Chong, T. P., Vathylakis, A., McEwen, A., Kemsley, F., Muhammad, C. & Siddiqi, S.2015 Aeroacoustic and aerodynamic performances of an aerofoil subjected to sinusoidal leading edges. In 21st AIAA/CEAS Aeroacoustics Conference. AIAA Paper 2015-2200.10.2514/6.2015-2200
Clair, V., Polacsek, C., Le Garrec, T., Reboul, G., Gruber, M. & Joseph, P. 2013 Experimental and numerical investigation of turbulence-airfoil noise reduction using wavy edges. AIAA J. 51 (11), 26952713.10.2514/1.J052394
Ffowcs Williams, J. E. & Hawkings, D. L. 1969 Sound generation by turbulence and surface in arbitrary motion. Phil. Trans. R. Soc. Lond. A 264, 321342.
Goldstein, M. E. 1976 Aeroacoustics. McGraw-Hill.
Hansen, K., Kelso, R. & Doolan, C. 2012 Reduction of flow induced airfoil tonal noise using leading edge sinusoidal modifications. Acoust. Australia 40 (3), 172177.
Juknevicius, A. & Chong, T. P. 2018 On the leading edge noise and aerodynamics of thin aerofoil subjected to the straight and curved serrations. J. Sound Vib. 425, 324343.
Kim, J. W. 2007 Optimised boundary compact finite difference schemes for computational aeroacoustics. J. Comput. Phys. 225, 9951019.
Kim, J. W. 2010 High-order compact filters with variable cut-off wavenumber and stable boundary treatment. Comput. Fluids 39, 11681182.10.1016/j.compfluid.2010.02.007
Kim, J. W. 2013 Quasi-disjoint pentadiagonal matrix systems for the parallelization of compact finite-difference schemes and filters. J. Comput. Phys. 241, 168194.10.1016/j.jcp.2013.01.046
Kim, J. W. & Haeri, S. 2015 An advanced synthetic eddy method for the computation of aerofoil-turbulence interaction noise. J. Comput. Phys. 287, 117.
Kim, J. W., Haeri, S. & Joseph, P. 2016 On the reduction of aerofoil-turbulence interaction noise associated with wavy leading edges. J. Fluid Mech. 792, 526552.10.1017/jfm.2016.95
Kim, J. W., Lau, A. S. H. & Sandham, N. D. 2010a CAA boundary conditions for airfoil noise due to high-frequency gusts. Proc. Eng. 6, 244253.10.1016/j.proeng.2010.09.026
Kim, J. W., Lau, A. S. H. & Sandham, N. D. 2010b Proposed boundary conditions for gust-airfoil interaction noise. AIAA J. 48 (11), 27052709.
Kim, J. W. & Lee, D. J. 2000 Generalized characteristic boundary conditions for computational aeroacoustics. AIAA J. 38 (11), 20402049.10.2514/2.891
Kim, J. W. & Lee, D. J. 2004 Generalized characteristic boundary conditions for computational aeroacoustics, part 2. AIAA J. 42 (1), 4755.
Kim, J. W. & Morris, P. J. 2002 Computation of subsonic inviscid flow past a cone using high-order schemes. AIAA J. 40 (10), 19611968.
Lau, A. S. H., Haeri, S. & Kim, J. W. 2013 The effect of wavy leading edges on aerofoil-gust interaction noise. J. Sound Vib. 332, 62346253.
Lyu, B. & Azarpeyvand, M. 2017 On the noise prediction for serrated leading edges. J. Fluid Mech. 826, 205234.10.1017/jfm.2017.429
Mathews, J. & Peake, N. 2018 An analytically-based method for predicting the noise generated by the interaction between turbulence and a serrated leading edge. J. Sound Vib. 422, 506525.
Narayanan, S., Chaitanya, P., Haeri, S., Joseph, P., Kim, J. W. & Polacsek, C. 2015 Airfoil noise reductions through leading edge serrations. Phys. Fluids 27, 025109.
Roger, M. & Moreau, S. 2016 Airfoil turbulence-impingement noise reduction by porosity or wavy leading-edge cut: experimental investigations. In Proceedings collection: INTER-NOISE and NOISE-CON Congress and Conference Proceedings, pp. 63666375. Institute of Noise Control Engineering.
Tong, F., Qiao, W., Xu, K., Wang, L., Chen, W. & Wang, X. 2018 On the study of wavy leading-edge vanes to achieve low fan interaction noise. J. Sound Vib. 419, 200226.
Turner, J. M. & Kim, J. W. 2017 Aeroacoustic source mechanisms of a wavy leading edge undergoing vortical disturbances. J. Fluid Mech. 811, 582611.
Turner, J. M. & Kim, J. W. 2019 Secondary noise sources in a vortical flow interacting with an undulated leading edge. J. Fluid Mech. (submitted).
Yee, H. C., Sandham, N. D. & Djomehri, M. J. 1999 Low-dissipative high-order shock-capturing methods using characteristic-based filters. J. Comput. Phys. 150, 199238.10.1006/jcph.1998.6177
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

On the universal trends in the noise reduction due to wavy leading edges in aerofoil–vortex interaction

  • Jacob M. Turner (a1) and Jae Wook Kim (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed