Skip to main content Accessibility help
×
Home

On the turbulent Prandtl number in homogeneous stably stratified turbulence

  • SUBHAS K. VENAYAGAMOORTHY (a1) (a2) and DEREK D. STRETCH (a2)

Abstract

In this paper, we derive a general relationship for the turbulent Prandtl number Prt for homogeneous stably stratified turbulence from the turbulent kinetic energy and scalar variance equations. A formulation for the turbulent Prandtl number, Prt, is developed in terms of a mixing length scale LM and an overturning length scale LE, the ratio of the mechanical (turbulent kinetic energy) decay time scale TL to scalar decay time scale Tρ and the gradient Richardson number Ri. We show that our formulation for Prt is appropriate even for non-stationary (developing) stratified flows, since it does not include the reversible contributions in both the turbulent kinetic energy production and buoyancy fluxes that drive the time variations in the flow. Our analysis of direct numerical simulation (DNS) data of homogeneous sheared turbulence shows that the ratio LM/LE ≈ 1 for weakly stratified flows. We show that in the limit of zero stratification, the turbulent Prandtl number is equal to the inverse of the ratio of the mechanical time scale to the scalar time scale, TL/Tρ. We use the stably stratified DNS data of Shih et al. (J. Fluid Mech., vol. 412, 2000, pp. 1–20; J. Fluid Mech., vol. 525, 2005, pp. 193–214) to propose a new parameterization for Prt in terms of the gradient Richardson number Ri. The formulation presented here provides a general framework for calculating Prt that will be useful for turbulence closure schemes in numerical models.

Copyright

Corresponding author

Email address for correspondence: vskaran@colostate.edu

References

Hide All
Baum, E. & Caponi, E. A. 1992 Modelling the effects of buoyancy on the evolution of geophysical boundary layers. J. Geophys. Res. 97, 1551315527.
Ellison, T. H. 1957 Turbulent transport of heat and momentum from an infinite rough plane. J. Fluid Mech. 2, 456466.
Gerz, T., Schumann, U. & Elghobashi, S. E. 1989 Direct numerical simulation of stratified homogeneous turbulent shear flows. J. Fluid Mech. 200, 563594.
Gregg, M. C. 1987 Diapycnal mixing in the thermocline. J. Geophys. Res. 92, 52495286.
Holt, S. E., Koseff, J. R. & Ferziger, J. H. 1992 A numerical study of the evolution and structure of homogeneous stably stratified sheared turbulence. J. Fluid Mech. 237, 499539.
Itsweire, E. C., Helland, K. N. & Van Atta, C. W. 1986 The evolution of grid-generated turbulence in a stably stratified fluid. J. Fluid Mech. 162, 299338.
Ivey, G. N., Winters, K. B. & Koseff, J. R. 2008 Density stratification, turbulence, but how much mixing? Annu. Rev. Fluid Mech. 40, 169184.
Kays, W. M. 1994 Turbulent Prandtl number – where are we? J. Heat Transfer. 116, 284295.
Kays, W. M. & Crawford, M. E. 1993 Convective Heat and Mass Transfer. McGraw-Hill.
Komori, S., Ueda, H., Ogina, F. & Mizushina, T. 1983 Turbulence structure in stably stratified open-channel flow. J. Fluid Mech. 130, 1326.
Launder, B. E. 1975 On the effects of a gravitational field on the turbulent transport of heat and momentum. J. Fluid Mech. 67, 569581.
Launder, B. E. & Spalding, D. B. 1972 Mathematical Models of Turbulence. Academic.
Mydlarski, L. 2003 Mixed velocity-passive scalar statistics in high-Reynolds-number turbulence. J. Fluid Mech. 475, 173203.
Peltier, W. R. & Caulfield, C. P. 2003 Mixing efficiency in stratified shear flows. Annu. Rev. Fluid Mech. 35, 135167.
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.
Rogers, M. M., Mansour, N. N. & Reynolds, W. C. 1989 An algebraic model for the turbulent flux of a passive scalar. J. Fluid Mech. 203, 77101.
Rohr, J. J., Itsweire, E. C., Helland, K. N. & Van Atta, C. W. 1988 Growth and decay of turbulence in a stably stratified shear flow. J. Fluid Mech. 195, 77111.
Schumann, U. & Gerz, T. 1995 Turbulent mixing in stably stratified shear flows. J. Appl. Meteorol. 34, 3348.
Shih, L. H., Koseff, J. R., Ferziger, J. H. & Rehmann, C. R. 2000 Scaling and parameterisation of stratified homogeneous turbulent shear flow. J. Fluid Mech. 412, 120.
Shih, L. H., Koseff, J. R., Ivey, G. N. & Ferziger, J. H. 2005 Parameterization of turbulent fluxes and scales using homogeneous sheared stably stratified turbulence simulations. J. Fluid Mech. 525, 193214.
Srivat, A. & Warhaft, Z. 1983 The effect of a passive cross-stream temperature gradient on the evolution of temperature variance and the heat flux in grid turbulence. J. Fluid Mech. 128, 323346.
Stretch, D. D., Rottman, J. W., Venayagamoorthy, S. K., Nomura, K. K. & Rehmann, C. R. 2010 Mixing efficiency in decaying stably stratified turbulence. Dyn. Atmos. Oceans. 49, 2536.
Townsend, A. A. 1976 The Structure of Turbulent Shear Flow. Cambridge University Press.
Venayagamoorthy, S. K. & Stretch, D. D. 2006 Lagrangian mixing in decaying stably stratified turbulence. J. Fluid Mech. 564, 197226.
Webster, C. A. G. 1964 An experimental study of turbulence in a density-stratified shear flow. J. Fluid Mech. 19, 221245.
Winters, K. B. & D'Asaro, E. A. 1996 Diascalar flux and the rate of fluid mixing. J. Fluid Mech. 317, 179193.
Yoon, K. H. & Warhaft, Z. 1990 The evolution of grid-generated turbulence under conditions of stable thermal stratification. J. Fluid Mech. 215, 601638.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Related content

Powered by UNSILO

On the turbulent Prandtl number in homogeneous stably stratified turbulence

  • SUBHAS K. VENAYAGAMOORTHY (a1) (a2) and DEREK D. STRETCH (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.