Altuna, A., Chaquet, J. M., Corral, R., Gisbert, F. & Pastor, G.
2013
Application of a fast loosely coupled fluid/solid heat transfer method to the transient analysis of low-pressure-turbine disk cavities. In ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, V03BT11A017. American Society of Mechanical Engineers.
Batchelor, G. K.
1951
Note on a class of solutions of the Navier–Stokes equations representing steady rotationally-symmetric flow. Q. J. Mech. Appl. Maths
IV (1), 29–41.
Bödewadt, U. T.
1940
Die Drehströmung über festem Grunde. Z. Angew. Math. Mech.
20 (5), 241–253.
Brady, J. F. & Durlofsky, L.
1987
On rotating disk flow. J. Fluid Mech.
175, 363–394.
Burgos, M. A., Contreras, J. & Corral, R.
2011
Efficient edge-based rotor/stator interaction method. AIAA J.
49 (1), 19–31.
Chaquet, J. M., Corral, R., Gisbert, F. & Pastor, G.
2015
A loosely coupled fluid/solid heat transfer method for disc cavities including mixing planes and a combination of 2D and 3D cavities. In ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, V05AT10A005. American Society of Mechanical Engineers.
Chew, J. W. & Hills, N. J.
2013
Rotating flow and heat transfer in cylindrical cavities with radial inflow. Trans. ASME J. Engng Gas Turbines Power
135, 032502.
Contreras, J., Corral, R. & Pastor, G.
2011
Turbomachinery thermal analysis using coupled two- and three dimensional models and reduced order fluid models. In ASME 2011 Turbo Expo, pp. 1301–1313. American Society of Mechanical Engineers.
Corral, R., Gisbert, F. & Pueblas, J.
2017
Execution of a parallel edge-based Navier–Stokes solver on commodity graphics processor units. Intl J. Comput. Fluid Dyn.
31 (2), 93–108.
Corral, R. & Wang, Z.
2018
An efficient steady state coupled fluid–solid heat transfer method for turbomachinery applications. Intl J. Therm. Sci.
130, 59–69.
Daily, J. W. & Nece, R. E.
1960
Chamber dimension effects on induced flow and frictional resistance of enclosed rotating disks. Trans. ASME J. Basic Engng
82 (1), 217–230.
Dijkstra, D. & van Heijst, G. J. F.
1983
The flow between two finite rotating disks enclosed by a cylinder. J. Fluid Mech.
128, 123–154.
van Eeten, K. M. P., van der Schaaf, J., van Heijst, G. J. F. & Schouten, J. C.
2013
Lyapunov-stability of solution branches of rotating disk flow. Phys. Fluids
25 (7), 073602.
van Eeten, K. M. P., van der Schaaf, J., Schouten, J. C. & van Heijst, G. J. F.
2012
Boundary layer development in the flow field between a rotating and a stationary disk. Phys. Fluids
24 (3), 033601.
Ganine, V., Javiya, U., Hills, N. & Chew, J.
2012
Coupled fluid–structure transient thermal analysis of a gas turbine internal air system with multiple cavities. Trans. ASME J. Engng Gas Turbines Power
134 (10), 102508.
Gärtner, W.
1998
A momentum integral method to predict the frictional torque of a rotating disk with protruding bolts. In ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition, V004T09A029. American Society of Mechanical Engineers.
Greenspan, H. P. & Howard, L. N.
1963
On a time-dependent motion of a rotating fluid. J. Fluid Mech.
17 (3), 385–404.
Holodniok, M., Kubi, M. & Hlavá, V.
1981
Computation of the flow between two rotating coaxial disks: multiplicity of steady-state solutions. J. Fluid Mech.
108, 227–240.
Itoh, M., Yamada, Y., Imao, S. & Gonda, M.
1992
Experiments on turbulent flow due to an enclosed rotating disk. Exp. Therm. Fluid Sci.
5 (3), 359–368.
von Kármán, T.
1921
Über laminare und turbulente Reibung. Z. Angew. Math. Mech.
1, 233–244.
Kreiss, H. & Parter, S. V.
1983
On the swirling flow between rotating coaxial disks: existence and nonuniqueness. Commun. Pure Appl. Maths
36 (1), 55–84.
Launder, B., Poncet, S. & Serre, E.
2010
Laminar, transitional, and turbulent flows in rotor–stator cavities. Annu. Rev. Fluid Mech.
42, 229–248.
Lopez, J. M.
1998
Characteristics of endwall and sidewall boundary layers in a rotating cylinder with a differentially rotating endwall. J. Fluid Mech.
359, 49–79.
Lopez, J. M., Hart, J. E., Marques, F., Kittelman, S. & Shen, J.
2002
Instability and mode interactions in a differentially driven rotating cylinder. J. Fluid Mech.
462, 383–409.
Lopez, J. M., Marques, F., Rubio, A. M. & Avila, M.
2009
Crossflow instability of finite Bödewadt flows: transients and spiral waves. Phys. Fluids
21 (11), 114107.
Lopez, J. M. & Weidman, P. D.
1996
Stability of stationary endwall boundary layers during spin-down. J. Fluid Mech.
326, 373–398.
Mellor, G. L., Chapple, P. J. & Stokes, V. K.
1968
On the flow between a rotating and a stationary disk. J. Fluid Mech.
31 (1), 95–112.
Owen, J. M., Pincombe, J. R. & Rogers, R. H.
1985
Source–sink flow inside a rotating cylindrical cavity. J. Fluid Mech.
155, 233–265.
Serre, E., Tuliszka-Sznitko, E. & Bontoux, P.
2004
Coupled numerical and theoretical study of the flow transition between a rotating and a stationary disk. Phys. Fluids
16 (3), 688–706.
Stewartson, K.
1953
On the flow between two rotating coaxial disks. Proc. Camb. Phil. Soc.
3, 333–341.
Sun, Z., Amirante, D., Chew, J. W. & Hills, N. J.
2016
Coupled aerothermal modeling of a rotating cavity with radial inflow. Trans. ASME J. Engng Gas Turbines Power
138 (3), 032505.
Sun, Z., Chew, J. W., Hills, N. J., Lewis, L. & Mabilat, C.
2012
Coupled aerothermomechanical simulation for a turbine disk through a full transient cycle. Trans. ASME J. Turbomach.
134 (1), 011014.
Sun, Z., Chew, J. W., Hills, N. J., Volkov, K. N. & Barnes, C. J.
2010
Efficient finite element analysis/computational fluid dynamics thermal coupling for engineering applications. Trans. ASME J. Turbomach.
132 (3), 031016.
Tao, Z., Zhang, D., Luo, X., Xu, G. & Han, J.
2014
Windage heating in a shrouded rotor–stator system. Trans. ASME J. Engng Gas Turbines Power
136 (6), 062602.
Weidman, P. D.
1976
On the spin-up and spin-down of a rotating fluid. Part 2. Measurements and stability. J. Fluid Mech.
77 (4), 709–735.
Zandbergen, P. J. & Dijkstra, D.
1977
Non-unique solutions of the Navier–Stokes equations for the Kármán swirling flow. J. Engng Maths
11 (2), 167–188.