Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T05:33:03.678Z Has data issue: false hasContentIssue false

On the non-local geometry of turbulence

Published online by Cambridge University Press:  30 April 2008

IVÁN BERMEJO-MORENO
Affiliation:
Graduate Aeronautical Laboratories, 205-45, California Institute of Technology, Pasadena, CA 91125, USAibermejo@caltech.edu
D. I. PULLIN
Affiliation:
Graduate Aeronautical Laboratories, 205-45, California Institute of Technology, Pasadena, CA 91125, USAibermejo@caltech.edu

Abstract

A multi-scale methodology for the study of the non-local geometry of eddy structures in turbulence is developed. Starting from a given three-dimensional field, this consists of three main steps: extraction, characterization and classification of structures. The extraction step is done in two stages. First, a multi-scale decomposition based on the curvelet transform is applied to the full three-dimensional field, resulting in a finite set of component three-dimensional fields, one per scale. Second, by iso-contouring each component field at one or more iso-contour levels, a set of closed iso-surfaces is obtained that represents the structures at that scale. The characterization stage is based on the joint probability density function (p.d.f.), in terms of area coverage on each individual iso-surface, of two differential-geometry properties, the shape index and curvedness, plus the stretching parameter, a dimensionless global invariant of the surface. Taken together, this defines the geometrical signature of the iso-surface. The classification step is based on the construction of a finite set of parameters, obtained from algebraic functions of moments of the joint p.d.f. of each structure, that specify its location as a point in a multi-dimensional ‘feature space’. At each scale the set of points in feature space represents all structures at that scale, for the specified iso-contour value. This then allows the application, to the set, of clustering techniques that search for groups of structures with a common geometry. Results are presented of a first application of this technique to a passive scalar field obtained from 5123 direct numerical simulation of scalar mixing by forced, isotropic turbulence (Reλ = 265). These show transition, with decreasing scale, from blob-like structures in the larger scales to blob- and tube-like structures with small or moderate stretching in the inertial range of scales, and then toward tube and, predominantly, sheet-like structures with high level of stretching in the dissipation range of scales. Implications of these results for the dynamical behaviour of passive scalar stirring and mixing by turbulence are discussed.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andreotti, B. 1997 Studying Burgers' models to investigate the physical meaning of the alignments statistically observed in turbulence. Phys. Fluids 9, 735742.CrossRefGoogle Scholar
Antonia, R. A., Chambers, A. J., Friehe, C. A. & Van Atta, C. W. 1979 Temperature ramps in the atmospheric surface layer. J. Atmos. Sci. 36, 99108.2.0.CO;2>CrossRefGoogle Scholar
Ashurst, W. T., Kerstein, A. R., Kerr, R. M. & Gibson, C. H. 1987 Alignment of vorticity and scalar gradient with strain rate in simulated Navier–Stokes turbulence. Phys. Fluids 30, 23432353.CrossRefGoogle Scholar
Batchelor, G. K. 1959 Small-scale variation of convected quantities like temperature in turbulent fluid. Part 1. General discussion and the case of small conductivity. J. Fluid Mech 5, 113133.CrossRefGoogle Scholar
Bellman, R. 1961 Adaptive Control Processes: A Guided Tour. Princeton University Press.CrossRefGoogle Scholar
Berkhin, P. 2002 Survey of clustering data mining techniques. Tech. Rep. Accrue Software, San Jose, CA.Google Scholar
Brown, G. L. & Roshko, A. 1974 On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64, 775816.CrossRefGoogle Scholar
Campbell, R. J. & Flynn, P. J. 2001 A survey of free-form object representation and recognition techniques. Comput. Vis. Image Underst. 81 (2), 166210.CrossRefGoogle Scholar
Candès, E., Demanet, L., Donoho, D. & Ying, L. 2005 Fast discrete curvelet transforms. Multiscale Model. Simul. 5, 861899.CrossRefGoogle Scholar
Candès, E. J. & Donoho, D. L. 2003 a Continuous curvelet transform: I Resolution of the wavefront set. Appl. Comput. Harmon. Anal. 19, 162197.CrossRefGoogle Scholar
Candès, E. J. & Donoho, D. L. 2003 b Continuous curvelet transform: II Discretization and frames. Appl. Comput. Harmon. Anal. 19, 198222.CrossRefGoogle Scholar
Celani, A., Lanotte, A., Mazzino, A. & Vergassola, M. 2001 Fronts in passive scalar turbulence. Phys. Fluids 13, 17681783.CrossRefGoogle Scholar
Chen, S.-G. & Wu, J.-Y. 2004 Estimating normal vectors and curvatures by centroid weights. Comput. Aided Geom. Des. 21, 447458.CrossRefGoogle Scholar
Chen, X. & Schmitt, F. 1992 Intrinsic surface properties from surface triangulation. In ECCV '92: Proc. Second European Conference on Computer Vision, pp. 739–743. Springer.CrossRefGoogle Scholar
Chong, M. S., Perry, A. E. & Cantwell, B. J. 1990 A general classification of three-dimensional flow field. Phys. Fluids A 2, 765783.CrossRefGoogle Scholar
Dong, C. & Wang, G. 2005 Curvatures estimation on triangular mesh. J. Zhejiang Uni. SCIENCE 6A (I), 128136.CrossRefGoogle Scholar
Dorai, C. & Jain, A. K. 1997 Shape Spectrum Based View Grouping and Matching of 3D Free-Form Objects. IEEE Trans. Pattern Anal. Mach. Intell. 19, 11391146.CrossRefGoogle Scholar
Farge, M. 1992 Wavelet transforms and their applications to turbulence. Annu. Rev. Fluid Mech. 24, 395457.CrossRefGoogle Scholar
Farge, M., Kevlahan, N., Perrier, V. & Goirand, E. 1996 Wavelets and turbulence. IEEE Proc., Special Issue on Wavelets (ed. Daubechies, I & Kovasevic, J.) 84(4), 639–669.Google Scholar
Farge, M., Pellegrino, G. & Schneider, K. 2001 Coherent vortex extraction in 3D turbulent flows using orthogonal wavelets. Phys. Rev. Lett. 87, 054501.CrossRefGoogle ScholarPubMed
Farge, M., Schneider, K. & Kevlahan, N. 1999 Non-Gaussianity and Coherent Vortex Simulation for two-dimensional turbulence using an adaptative orthogonal wavelet basis. Phys. Fluids 11, 21872201.CrossRefGoogle Scholar
Farge, M., Schneider, K., Pellegrino, G., Wray, A. A. & Rogallo, R. S. 2003 Coherent vortex extraction in three-dimensional homogeneous turbulence: Comparison between CVS-wavelet and POD-Fourier decompositions. Phys. Fluids 15, 28862896.CrossRefGoogle Scholar
Horiuti, K. 2001 A classification method for vortex sheet and tube structures in turbulent flows. Phys. Fluids A 13, 37563774.CrossRefGoogle Scholar
Horiuti, K. & Takagi, Y. 2005 Identification method for vortex sheet structures in turbulent flows. Phys. Fluids 17, 121703.CrossRefGoogle Scholar
Hou, T. Y. & Li, R. 2006 Dynamic depletion of vortex stretching and non-blowup of the 3-D incompressible Euler equations. J. Nonlinear Sci. 16, 639664.CrossRefGoogle Scholar
Hunt, J. C. R., Wray, A. A. & Moin, P. 1988 Eddies, stream, and convergence zones in turbulent flows. Center for Turbulence Research Report CTR-S88.Google Scholar
Iyer, N., Jayantiand, S., Lou, K., Kalyanaraman, Y. & Ramani, K 2005 Three dimensional shape searching: state-of-the-art review and future trends. Computer Aided Design 37, 509530.CrossRefGoogle Scholar
Jaberi, F. A., Miller, R. S., Madnia, C. K. & Givi, P. 1996 Non-Gaussian scalar statistics in homogeneous turbulence. J. Fluid Mech. 313, 241282.CrossRefGoogle Scholar
Jayesh, & Warhaft, Z. 1992 Probability distribution, conditional dissipation, and transport of passive temperature fluctuations in grid-generated turbulence. Phys. Fluids A 4, 22922307.CrossRefGoogle Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.CrossRefGoogle Scholar
Jiménez, J., Wray, A. W., Saffman, P. G. & Rogallo, R. S. 1993 The structure of intense vorticity in isotropic turbulence. J. Fluid Mech. 255, 6590.CrossRefGoogle Scholar
Kerr, R. M. 1985 Higher-order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence. J. Fluid Mech. 153, 3158.CrossRefGoogle Scholar
Koenderink, J. J. & van Doorn, A. J. 1992 Surface shape and curvature scales. Image Vision Comput. 10, 557565.CrossRefGoogle Scholar
Kolmogorov, A. N. 1941 The local structure of turbulence in incompressible viscous fluids at very large Reynolds numbers. Dokl. Nauk. SSSR. 30, 301305.Google Scholar
Kolmogorov, A. N. 1962 A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds numbers. J. Fluid Mech. 13, 8285.CrossRefGoogle Scholar
Lundgren, T. S. 1982 Strained spiral vortex model for turbulent fine structure. Phys. Fluids 25, 2193.CrossRefGoogle Scholar
Meneveau, C. 1991 Analysis of turbulence in the orthonormal wavelet representation. J. Fluid Mech. 232, 469520.CrossRefGoogle Scholar
Meyer, M., Desbrun, M., Schröder, P. & Barr, A. H. 2003 Discrete differential operators for triangulated 2-manifolds. In Visualizations and Mathematics III (ed. Hege, H. C. & Polthier, K.) pp. 3357. Springer.Google Scholar
Misra, A. & Pullin, D. I. 1997 A vortex-based subgrid stress model for large-eddy simulations. Phys. Fluids 9, 2443.CrossRefGoogle Scholar
Miura, H. & Kida, S. 1997 Indentification of tubular vortices in turbulence. J. Phys. Soc. Japan 66, 13311334.CrossRefGoogle Scholar
Moisy, F. & Jiménez, J. 2004 Geometry and clustering of intense structures in isotropic turbulence. J. Fluid Mech. 513, 111133.CrossRefGoogle Scholar
Ng, A., Jordan, M. & Weiss, Y. 2001 On spectral clustering: Analysis and an algorithm. Adv. Neural Inform. Proc. Sys. 14, 849856.Google Scholar
O'Gorman, P. A. & Pullin, D. I. 2004 On modal time correlations of turbulent velocity and scalar fields. J. Turbulence 5, 035.CrossRefGoogle Scholar
Osada, R., Funkhouser, T., Chazelle, B. & Dobkin, D. 2001 Matching 3D models with shape distributions. In SMI '01: Proc. Intl Conf. on Shape Modeling & Applications, pp. 154–166. Washington, DC, USA: IEEE Computer Society.Google Scholar
Overholt, M. R. & Pope, S. B. 1996 Direct numerical simulation of a passive scalar with imposed mean gradient in isotropic turbulence. Phys. Fluids 8, 31283148.CrossRefGoogle Scholar
Perry, A. E. & Chong, M. S. 1987 A description of eddying motions and flow patterns using critical-point concepts. Annu. Rev. Fluid Mech. 19, 125–55.CrossRefGoogle Scholar
Pullin, D. I. & Lundgren, T. S. 2001 Axial motion and scalar transport in stretched spiral vortices. Phys. Fluids 13, 25532563.CrossRefGoogle Scholar
Pullin, D. I. & Saffman, P. G. 1993 On the Lundgren-Townsend model of turbulent fine scales. Phys. Fluids A 5, 126145.CrossRefGoogle Scholar
Richardson, L. F. 1922 Weather Prediction by Numerical Process. Cambridge University Press.Google Scholar
Rousseeuw, P. J. 1987 Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Maths 20, 5365.CrossRefGoogle Scholar
Schwarz, G. 1978 Estimating the dimension of a model. Ann. Statist. 6, 461464.CrossRefGoogle Scholar
Schumacher, J. & Sreenivasan, K. R. 2005 Statistics and geometry of passive scalars in turbulence. Phys. Fluids 17, 125107.CrossRefGoogle Scholar
Siggia, E. D. 1981 Numerical study of small-scale intermittency in three-dimensional turbulence. J. Fluid Mech. 107, 375406.CrossRefGoogle Scholar
Tanaka, M. & Kida, S. 1993 Characterization of vortex tubes and sheets. Phys. Fluids A 5, 20792082.CrossRefGoogle Scholar
Taubin, G. 1995 Estimating the tensor of curvature of a surface from a polyhedral approximation. ICCV '95: Proc. Fifth Intl Conf. on Computer Vision, pp. 902–907.Google Scholar
Tennekes, A. A. 1968 Simple model for the small-scale structure of turbulence. Phys. Fluids 11, 669.CrossRefGoogle Scholar
Tennekes, H. & Lumley, J. L. 1974 A First Course in Turbulence. The MIT Press.Google Scholar
Townsend, A. A. 1951 On the fine-scale structure of turbulence. Proc. R. Soc. Lond. A 208, 534542.Google Scholar
Warhaft, Z. 2000 Passive scalars in turbulent flows. Annu. Rev. Fluid Mech. 32, 203240.CrossRefGoogle Scholar
Ying, L., Demanet, L. & Candès, E. J. 2005 3D Discrete curvelet transform. Tech. Rep. Applied and Computational Mathematics, California Institute of Technology.Google Scholar
Zaharia, T. & Prêteux, F. 2001 3D shape-based retrieval within the MPEG-7 framework. In Proc. SPIE Volume 4304: Nonlinear Image Processing and Pattern Analysis XII, pp. 133–145.Google Scholar
Zelnik-Manor, L. & Perona, P. 2004 Self-tuning spectral clustering. Eighteenth Annual Conference on Neural Information Processing Systems (NIPS).Google Scholar