Skip to main content Accessibility help

On the maximal spreading of impacting compound drops

  • H.-R. Liu (a1), C.-Y. Zhang (a1), P. Gao (a1) (a2), X.-Y. Lu (a1) and H. Ding (a1) (a2)...


We numerically study the impact of a compound drop on a hydrophobic substrate using a ternary-fluid diffuse-interface method, aiming to understand how the presence of the inner droplet affects the spreading dynamics and maximal spreading of the compound drop. First, it is interesting to see that the numerical results for an impacting pure drop agree well with the universal rescaling of maximal spreading ratio proposed by Lee et al. (J. Fluid Mech., vol. 786, 2016, R4). Second, two flow regimes have been identified for an impacting compound drop: namely jammed spreading and joint rim formation. The maximal spreading ratio of the compound drop is found to depend on the volume fraction of the inner droplet $\unicode[STIX]{x1D6FC}$ , the surface tension ratio $\unicode[STIX]{x1D6FE}$ , the Weber number and the flow regime. Moreover, we propose a universal rescaling of maximal spreading ratio for compound drops, by integrating the one for pure drops with a corrected Weber number that takes $\unicode[STIX]{x1D6FC}$ , $\unicode[STIX]{x1D6FE}$ and the flow regime into account. The predictions of the universal rescaling are in good agreement with the numerical results for impacting compound drops.


Corresponding author

Email address for correspondence:


Hide All
Chandra, B. S. & Avedisian, C. T. 1991 On the collision of a droplet with a solid surface. Proc. R. Soc. Lond. A 432, 1341.
Chen, R. H., Chiu, S. L. & Lin, T. H. 2007 Resident time of a compound drop impinging on a hot surface. Appl. Therm. Engng 27, 20792085.
Chiu, S. & Lin, T. 2005 Experiment on the dynamics of a compound drop impinging on a hot surface. Phys. Fluids 17, 122103.
Clanet, C., Béguin, C., Richard, D. & Quéué, D. 2004 Maximal deformation of an impacting drop. J. Fluid Mech. 517, 199208.
Collings, E. W., Markworth, A. J., Mccoy, J. K. & Saunder, J. H. 1991 Splat-quench solidification of freely falling liquid-metal drops by impact on a planar substrate. J. Mater. Sci. 25, 36773682.
Delcea, M., Mohwald, H. & Skirtach, A. G. 2011 Stimuli-responsive LbL capsules and nanoshells for drug delivery. Adv. Drug Deliv. Rev. 63, 730747.
Derby, B. 2010 Inkjet printing of functional and structural materials: fluid property requirements feature stability, and resolution. Annu. Rev. Mater. Res. 40, 395414.
Eggers, J., Fontelos, M. A., Josserand, C. & Zaleski, S. 2010 Drop dynamics after impact on a solid wall: theory and simulations. Phys. Fluids 22, 062101.
Gulyaev, I. P. & Solonenko, O. P. 2013 Hollow droplets impacting onto a solid surface. Exp. Fluids 54, 1432.
Hendriks, J., Visser, C. W., Henke, S., Leijten, J., Saris, D. B. F., Sun, C., Lohse, D. & Karperien, M. 2015 Optimizing cell viability in droplet-based cell deposition. Sci. Rep. 5, 11304.
Joung, Y. S. & Buie, C. R. 2014 Aerosol generation by raindrop impact on soil. Nat. Commun. 6, 6083.
Laan, N., Bruin, K. G., Bartolo, D., Josserand, C. & Bonn, D. 2014 Maximum diameter of impacting liquid droplets. Phys. Rev. Appl. 2, 044018.
Lee, J. B., Laan, N., De Bruin, K. G., Skantzaris, G., Shahidzadeh, N., Derome, D., Carmeliet, J. & Bonn, D. 2016 Universal rescaling of drop impact on smooth and rough surfaces. J. Fluid Mech. 786, R4.
Li, D., Duan, X., Zheng, Z. & Liu, Y. 2018 Dynamics and heat transfer of a hollow droplet impact on a wetted solid surface. Intl J. Heat Mass Transfer 122, 10141023.
Liu, H. R. & Ding, H. 2015 A diffuse-interface immersed-boundary method for two-dimensional simulation of flows with moving contact lines on curved substrates. J. Comput. Phys. 294, 484502.
Mishchenko, L., Hatton, B., Bahadur, V., Taylor, J. A., Krupenkin, T. & Aizenberg, J. 2010 Design of ice-free nanostructured impacting water droplets. ACS Nano 4, 76997707.
Moreira, A. L. N., Moita, A. S. & Panao, M. R. 2010 Advances and challenges in explaining fuel spray impingement: How much of single droplet impact research is useful? Prog. Energ. Combust. 36, 554580.
Murphy, S. V. & Atala, A. 2014 3D bioprinting of tissues and organs. Nat. Biotechnol. 32, 773785.
Tasoglu, S., Kaynak, G., Szer, A. J., Demirci, U. & Muradoglu, M. 2010 Impact of a compound droplet on a flat surface: a model for single cell epitaxy. Phys. Fluids 22, 082103.
Thoroddsen, S. T., Etoh, T. G., Takehara, K., Ootsuka, N. & Hatsuki, Y. 2005 The air bubble entrapped under a drop impacting on a solid surface. J. Fluid Mech. 545, 203212.
Wildeman, S., Visser, C. W., Sun, C. & Lohse, D. 2016 On the spreading of impacting drops. J. Fluid Mech. 805, 636656.
Zhang, C. Y., Ding, H., Gao, P. & Wu, Y. L. 2016 Diffuse interface simulation of ternary fluids in contact with solid. J. Comput. Phys. 309, 3751.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed