Skip to main content Accessibility help

On the inference of the state of turbulence and mixing efficiency in stably stratified flows

  • Amrapalli Garanaik (a1) and Subhas K. Venayagamoorthy (a1)


Scaling arguments are presented to quantify the widely used diapycnal (irreversible) mixing coefficient $\unicode[STIX]{x1D6E4}=\unicode[STIX]{x1D716}_{PE}/\unicode[STIX]{x1D716}$ in stratified flows as a function of the turbulent Froude number $Fr=\unicode[STIX]{x1D716}/Nk$ . Here, $N$ is the buoyancy frequency, $k$ is the turbulent kinetic energy, $\unicode[STIX]{x1D716}$ is the rate of dissipation of turbulent kinetic energy and $\unicode[STIX]{x1D716}_{PE}$ is the rate of dissipation of turbulent potential energy. We show that for $Fr\gg 1$ , $\unicode[STIX]{x1D6E4}\propto Fr^{-2}$ , for $Fr\sim \mathit{O}(1)$ , $\unicode[STIX]{x1D6E4}\propto Fr^{-1}$ and for $Fr\ll 1$ , $\unicode[STIX]{x1D6E4}\propto Fr^{0}$ . These scaling results are tested using high-resolution direct numerical simulation (DNS) data from three different studies and are found to hold reasonably well across a wide range of $Fr$ that encompasses weakly stratified to strongly stratified flow conditions. Given that the $Fr$ cannot be readily computed from direct field measurements, we propose a practical approach that can be used to infer the $Fr$ from readily measurable quantities in the field. Scaling analyses show that $Fr\propto (L_{T}/L_{O})^{-2}$ for $L_{T}/L_{O}>O(1)$ , $Fr\propto (L_{T}/L_{O})^{-1}$ for $L_{T}/L_{O}\sim O(1)$ , and $Fr\propto (L_{T}/L_{O})^{-2/3}$ for $L_{T}/L_{O}<O(1)$ , where $L_{T}$ is the Thorpe length scale and $L_{O}$ is the Ozmidov length scale. These formulations are also tested with DNS data to highlight their validity. These novel findings could prove to be a significant breakthrough not only in providing a unifying (and practically useful) parameterization for the mixing efficiency in stably stratified turbulence but also for inferring the dynamic state of turbulence in geophysical flows.


Corresponding author

Email address for correspondence:


Hide All
Arthur, R. S., Venayagamoorthy, S. K., Koseff, J. R. & Fringer, O. B. 2017 How we compute N matters to estimates of mixing in stratified flows. J. Fluid Mech. 831, R2.
Brethouwer, G., Billant, P., Lindberg, E. & Chomaz, J. M. 2007 Scaling analysis and simulation of strongly statified turbulent flows. J. Fluid Mech. 585, 343368.
Ellison, T. H. 1957 Turbulent transport of heat and momentum from an infinite rough plane. J. Fluid Mech. 2, 456466.
Garanaik, A. & Venayagamoorthy, S. K. 2018 Assessment of small-scale anisotropy in stably stratified turbulent flows using direct numerical simulations. Phys. Fluids 30, 126602.
Gregg, M. C., D’Asaro, E. A., Riley, J. J. & Kunze, E. 2018 Mixing efficiency in the ocean. Annu. Rev. Marine Sci. 10 (1), 443473.
Holford, J. M. & Linden, P. F. 1999 Turbulent mixing in a stratified fluid. Dyn. Atmos. Oceans 30, 173198.
Holleman, R. C., Geyer, W. R. & Ralston, D. K. 2016 Stratified turbulence and mixing efficiency in a salt wedge estuary. J. Phys. Oceanogr. 46, 17691783.
Ijichi, T. & Hibiya, T. 2018 Observed variations in turbulent mixing efficiency in the deep ocean. J. Phys. Oceanogr. 48, 18151830.
Itsweire, E. C., Koseff, J. R., Briggs, D. A. & Ferziger, J. H. 1993 Turbulence in stratified shear flows: implications for interpreting shear-induced mixing in the ocean. J. Phys. Oceanogr. 23, 15081522.
Ivey, G. N. & Imberger, J. 1991 On the nature of turbulence in a stratified fluid. Part I. The energetics of mixing. J. Phys. Oceanogr. 21, 650659.
Linden, P. F. 1979 Mixing in stratified fluids. Geophys. Astrophys. Fluid Dyn. 13, 323.
Lozovatsky, I. D. & Fernando, H. J. S. 2013 Mixing efficiency in natural flows. Phil. Trans. R. Soc. Lond. A 371, 46624672.
Luketina, D. & Imberger, J. 1989 Turbulence and entrainment in a buoyant surface plume. J. Geophys. Res. 94 (C9), 1261912636.
Maffioli, A., Brethouwer, G. & Lindborg, E. 2016 Mixing efficiency in stratified turbulence. J. Fluid Mech. 794, R3.
Mater, B. D., Schaad, S. M. & Venayagamoorthy, S. K. 2013 Relevance of the Thorpe scale in stably stratified turbulence. Phys. Fluids 25, 076604.
Mater, B. D. & Venayagamoorthy, S. K. 2014 The quest for an unambiguous parameterization of mixing efficiency in stably stratified geophysical flows. Geophys. Res. Lett. 41, 46464653.
Monismith, S. G., Koseff, J. R. & White, B. L. 2018 Mixing efficiency in the presence of stratification: when is it constant? Geophys. Res. Lett. 45, 56275634.
Munk, W. & Wunsch, C. 1998 Abyssal receipes II: energetics of tidal and wind mixing. Deep Sea Res. 45, 19772010.
Osborn, T. R. 1980 Estimates of the rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr. 10, 8389.
Ozmidov, R. V. 1965 On the turbulent exchange in a stably stratified ocean. Izv. Acad. Sci., USSR, Atmos. Ocean. Phys. 1, 853860.
Peltier, W. R. & Caulfield, C. P. 2003 Mixing efficiency in stratified shear flows. Annu. Rev. Fluid Mech. 35, 135167.
Rehmann, C. R. 2004 Scaling for the mixing efficiency of stratified grid turbulence. J. Hydraul. Res. 42, 3542.
Riley, J. J., Metcalfe, R. W. & Weissman, M. A. 1981 Direct numerical simulations of homogeneous turbulence in density stratified fluids. In Nonlinear Properties of Internal Waves AIP Conf. Proc. 76 (ed. West, B. J.), pp. 79112. AIP.
Salehipour, H. & Peltier, W. R. 2015 Diapycnal diffusivity, turbulent Prandtl number and mixing efficiency in Boussinesq stratified turbulence. J. Fluid Mech. 775, 464500.
Scotti, A. & White, B. 2016 The mixing efficiency of stratified turbulent boundary layer. J. Phys. Oceanogr. 46, 31813191.
Shih, L. H., Koseff, J. R., Ferziger, J. H. & Rehmann, C. R. 2000 Scalling and parameterization of stratified homogeneous turbulent shear flow. J. Fluid Mech. 412, 120.
Shih, L. H., Koseff, J. R., Ivey, G. N. & Ferziger, J. H. 2005 Parameterization of turbulent fluxes and scales using homogeneous sheared stably stratified turbulence simulations. J. Fluid Mech. 525, 193214.
Smyth, W. D, Moum, J. N. & Caldwell, D. R. 2001 The efficiency of mixing in turbulent patches: inferences from direct simulations and microstructure observations. J. Phys. Oceanogr. 31 (8), 19691992.
Thorpe, S. A. 1977 Turbulence and mixing in a Scotish loch. Phil. Trans. R. Soc. Lond. A 286, 125181.
Venayagamoorthy, S. K. & Koseff, J. 2016 On the flux Richardson number in stably stratified turbulence. J. Fluid Mech. 798, R1.
Venayagamoorthy, S. K. & Stretch, D. D. 2010 On the turbulent Prandtl number in homogeneous stably stratified turbulence. J. Fluid Mech. 644, 359369.
Winters, K. B., Lombard, P. N., Riley, J. J. & D’Asaro, E. A. 1995 Available potential energy and mixing in density-stratified fluids. J. Fluid Mech. 289, 115128.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

On the inference of the state of turbulence and mixing efficiency in stably stratified flows

  • Amrapalli Garanaik (a1) and Subhas K. Venayagamoorthy (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.