Skip to main content Accessibility help

On the critical free-surface flow over localised topography

  • J. S. Keeler (a1) (a2), B. J. Binder (a2) and M. G. Blyth (a1)


Flow over bottom topography at critical Froude number is examined with a focus on steady, forced solitary wave solutions with algebraic decay in the far field, and their stability. Using the forced Korteweg–de Vries (fKdV) equation the weakly nonlinear steady solution space is examined in detail for the particular case of a Gaussian dip using a combination of asymptotic analysis and numerical computations. Non-uniqueness is established and a seemingly infinite set of steady solutions is uncovered. Non-uniqueness is also demonstrated for the fully nonlinear problem via boundary-integral calculations. It is shown analytically that critical flow solutions have algebraic decay in the far field both for the fKdV equation and for the fully nonlinear problem and, moreover, that the leading-order form of the decay is the same in both cases. The linear stability of the steady fKdV solutions is examined via eigenvalue computations and by a numerical study of the initial value fKdV problem. It is shown that there exists a linearly stable steady solution in which the deflection from the otherwise uniform surface level is everywhere negative.


Corresponding author

Email address for correspondence:


Hide All
Abramowitz, M. & Stegun, I. A. 1964 Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. US Department of Commerce.
Akylas, T. R. 1984 On the excitation of long nonlinear water waves by a moving pressure distribution. J. Fluid Mech. 141, 455466.
Akylas, T. R., Dias, F. & Grimshaw, R. H. J. 1998 The effect of the induced mean flow on solitary waves in deep water. J. Fluid Mech. 355, 317328.
Alias, A., Grimshaw, R. H. J. & Khusnutdinova, K. R. 2013 On strongly interacting internal waves in a rotating ocean and coupled Ostrovsky equations. Chaos 23, 023121.
Baines, G. B. 1977 Upstream influence and Long’s model in stratified flows. J. Fluid Mech. 82, 147159.
Baines, G. B. 1984 A unifed description of two-layer flow over topography. J. Fluid Mech. 146, 127167.
Barashenkov, I. V. & Zemlyanaya, E. V. 2000 Oscillatory instabilities of gap solitions: a numerical study. Comput. Phys. Commun. 172, 2227.
Bender, C. M. & Orszag, S. A. 1999 Advanced Mathematical Methods for Scientists and Engineers I. Springer.
Benjamin, T. B., Bona, J. L. & Mahony, J. J. 1972 Model equations for long waves in nonlinear dispersive systems. Phil. Trans. R. Soc. Lond. 272 (1220), 4778.
Binder, B. J., Blyth, M. G. & Balasuriya, S. 2014 Non-uniqueness of steady free-surface flow at critical Froude number. Europhys. Lett. 105, 44003.
Bishop, M. J. 2004 A posteriori evaluation of strategies of management: the effectiveness of no-wash zones in minimizing the impacts of boat-wash on macrobenthic infauna. Environ. Manage. 34 (1), 140149.
Bishop, M. J. & Chapman, M. G. 2004 Managerial decisions as experiments: an opportunity to determine the ecological impact of boat-generated waves on macrobenthic infauna. Estuar. Coast. Shelf Sci. 61 (4), 613622.
Blyth, M. G. & Părău, E. I. 2016 The stability of capillary waves on fluid sheets. J. Fluid Mech. 806, 534.
Boyd, J. P. 2000 Chebyshev and Fourier Spectral Methods. Dover Publications.
Bridges, T. J., Derks, G. & Gottwald, G. A. 2002 Stability and instability of solitary waves of the fifth-order KdV equation: a numerical framework. Physica D 172, 190216.
Camassa, R. & Wu, T. Y-T. 1991 Stability of forced steady solitary waves. Phil. Trans. R. Soc. Lond. 10, 429466.
Chang, H.-H. & Demekhin, E. A. 2002 Complex Wave Dynamics on Thin Films. Elsevier.
Chardard, R., Dias, F., Nyguyen, H. Y. & Vanden-Broeck, J-M. 2011 Stability of some stationary soutions to the forced KdV equation with one or two bumps. J. Engng Maths 70, 175189.
Choi, W. & Camassa, R. 1999 Exact evolution equations for surface waves. J. Engng Mech. ASCE 125 (7), 756760.
Chugunova, M. & Pelinovsky, D. 2010 Count of eigenvalues in the generalized eigenvalue problem. J. Math. Phys. 51 (5), 052901.
Coddington, E. A. & Levinson, N. 1955 Theory of Ordinary Differential Equations. Tata McGraw-Hill Education.
Dias, F. & Vanden-Broeck, J. M. 2002 Generalised critical free-surface flows. J. Engng Maths 42, 291302.
Drazin, P. G. & Johnson, R. S. 1989 Solitons: An Introduction. Cambridge University Press.
Ee, B. K., Grimshaw, R. H. J., Zhang, D.-H. & Chow, K. W. 2010 Steady transcritical flow over a hole: parametric map of solutions of the forced Korteweg–de Vries equation. Phys. Fluids 22, 056602.
Ellis, J. T., Sherman, D. J., Bauer, B. O. & Hart, J. 2002 Assessing the impact of an organic restoration structure on boat wake energy. J. Coast. Res. 36, 256265.
Grimshaw, R. H. J. & Maleewong, M. 2016 Transcritical flow over two obstacles: forced Korteweg–de Vries framework. J. Fluid Mech. 809, 918940.
Grimshaw, R. H. J., Zhang, D-H. & Chow, K. W. 2007 Generation of solitary waves by transcritical flow over a step. J. Fluid Mech. 537, 235254.
Grimshaw, R. & Smyth, N. 1986 Resonant flow of a stratified fluid over topography. J. Fluid Mech. 169, 429464.
Holm, D. D., Marsden, J. E., Ratiu, T. & Weinstein, A. 1985 Non-linear stability of fluid and plasma equilibria. Phys. Rep. 123, 1116.
Hunter, J. K. & Vanden-Broeck, J.-M. 1983 Accurate computations for steep solitary waves. J. Fluid Mech. 136, 6371.
Kapitula, T. & Stefanov, A. 2014 A Hamiltonian–Krein (instability) index theory for solitary waves to KdV-like eigenvalue problems. Stud. Appl. Maths 132 (3), 183211.
Keeler, J.2017 Free-surface flow over bottom topography. PhD thesis, University of East Anglia.
Landau, L. D. & Lifshitz, E. M. 1977 Quantum Mechanics – Non-Relativistic Theory. Pergamon.
Lighthill, M. J. 1958 An Introduction to Fourier Analysis and Generalised Functions. Cambridge University Press.
Longuet-Higgins, M. S. & Fox, M. J. H. 1977 Theory of the almost-highest wave: the inner solution. J. Fluid Mech. 80 (04), 721741.
Malanotte-Rizzoli, P. 1984 Boundary-forced nonlinear planetary radiation. J. Phys. Oceanogr. 14 (6), 10321046.
Pelinovsky, D. E.2012 Spectral stability of nonlinear waves in KdV-type evolution equations. Preprint, arXiv:1212.3489.
Sandstede, B. 2002 Stability of travelling waves. Handbook Dyn. Sys. 2, 9831055.
Sandstede, B. & Scheel, A. 2000 Absolute and convective instabilities of waves on unbounded and large bounded domains. Physica D 145 (3), 233277.
Smyth, N. F. 1987 Modulation theory solution for resonant flow over topography. Proc. R. Soc. Lond. 409, 7997.
Sun, S.-M. 1997 Some analytical properties of capillary-gravity waves in two-fluid flows of infinite depth. Proc. R. Soc. Lond. A 453, 11531175.
Tam, A. T., Yu, Z., Kelso, R. M. & Binder, B. J. 2015 Predicting channel bed topography in hydraulic falls. Phys. Fluids 27, 112–106.
Titchmarsh, E. C. 1962 Eigenfunction Expansions Associated with Second Order Differential Equations. Part 1. Oxford University Press.
Trefethen, L. N. 2000 Spectral Methods in Matlab. Society for Industrial and Applied Mathematics.
Viotti, C., Dutykh, D. & Dias, F. 2014 The conformal-mapping method for surface gravity waves in the presence of variable bathymetry and mean current. Procedia IUTAM 11, 110118.
Wade, S. L., Binder, B. J., Mattner, T. W. & Denier, J. P. 2014 On the free surface flow of very steep forced solitary waves. J. Fluid Mech. 739, 121.
Wu, T. Y-T. 1987 Generation of upstream advancing solitons by moving disturbances. J. Fluid Mech. 184, 7599.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

On the critical free-surface flow over localised topography

  • J. S. Keeler (a1) (a2), B. J. Binder (a2) and M. G. Blyth (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed