Ahmed, M. & Youssef, M. S.
2012
Characteristics of mean droplet size produced by spinning disk atomizers. Trans. ASME J. Fluids Engng
134, 071103.

Ahmed, M. & Youssef, M. S.
2014
Influence of spinning cup and disk atomizer configurations on droplet size and velocity characteristics. Chem. Engng Sci.
107, 149–157.

Ambravaneswaran, B., Phillips, S. D. & Basaran, O. A.
2000
Theoretical analysis of a dripping faucet. Phys. Rev. Lett.
85, 5332–5335.

Aziz, A. K.
1972
Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations. Academic Press.

Bechtel, S. E., Carlson, C. D. & Forest, M. G.
1995
Recovery of the Rayleigh capillary instability from slender 1-D inviscid and viscous models. Phys. Fluids
7 (12), 2956–2971.

Borthakur, M. P., Biswas, G. & Bandyopadhyay, D.
2017
Formation of liquid drops at an orifice and dynamics of pinch-off in liquid jets. Phys. Rev. E
96, 013115.

Castrejón-Pita, J. R., Castrejón-Pita, A. A., Thete, S. S., Sambath, K., Hitchings, I. M., Hinch, J., Lister, J. R. & Basaran, O. A.
2015
Plethora of transitions during breakup of liquid filaments. Proc. Natl Acad. Sci. USA
112, 4582–4587.

Chakraborty, I., Rubio-Rubio, M., Sevilla, A. & Gordillo, J. M.
2016
Numerical simulation of axisymmetric drop formation using a coupled level set and volume of fluid method. Intl J. Multiphase Flow
84, 54–65.

Cheong, B. S. & Howes, T.
2004
Capillary jet instability under the influence of gravity. Chem. Engng Sci.
59, 2145–2157.

Chesnokov, Y. G.
2000
Nonlinear development of capillary waves in a viscous liquid jet. J. Tech. Phys.
45 (8), 787–794.

Decent, S. P., King, A. C., Simmons, M. J. H., Părău, E. I., Wallwork, I. M., Gurney, C. J. & Uddin, J.
2009
The trajectory and stability of a spiralling liquid jet: viscous theory. Appl. Maths Model.
33, 4283–4302.

Decent, S. P., King, A. C. & Wallwork, I. M.
2002
Free jets spun from a prilling tower. J. Engng Maths
42, 265–282.

Entov, V. M. & Yarin, A. L.
1984
The dynamics of thin liquid jets in air. J. Fluid Mech.
140, 91–111.

Frankel, I. & Weihs, D.
1985
Stability of a capillary jet with linearly increasing axial velocity (with application to shaped charges). J. Fluid Mech.
155, 289–307.

Frankel, I. & Weihs, D.
1987
Influence of viscosity on the capillary instability of a stretching jet. J. Fluid Mech.
185, 361–383.

Frost, A. R.
1981
Rotary atomization in the ligament formation mode. J. Agric. Engng Res.
26, 63–78.

van Hoeve, W., Gekle, S., Snoeijer, J., Versluis, M., Brenner, M. P. & Lohse, D.
2010
Breakup of diminutive Rayleigh jets. Phys. Fluids
22, 122003.

Huerre, P. & Monkewitz, P. A.
1990
Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech.
22, 473–537.

Kistler, S. F. & Scriven, L. E.
1984
Coating flow theory by finite element and asymptotic analysis of the Navier–Stokes system. Intl J. Numer. Meth. Fluids
4, 207–229.

Le Dizès, S. & Villermaux, E.
2017
Capillary jet breakup by noise amplification. J. Fluid Mech.
810, 281–306.

Leib, S. J. & Goldstein, M. E.
1986a
Convective and absolute instability of a viscous liquid jet. Phys. Fluids
29 (4), 952–954.

Leib, S. J. & Goldstein, M. E.
1986b
The generation of capillary instabilities on a liquid jet. J. Fluid Mech.
168, 479–500.

Lenard, P.
1887
Über die Schwingungen fallander Tropfen. Ann. Phys.
30, 209–243.

Li, Y., Sisoev, G. M. & Shikhmurzaev, Y. D.
2018
Spinning disk atomization: theory of the ligament regime. Phys. Fluids
30, 092101.

Li, Y. & Sprittles, J. E.
2016
Capillary breakup of a liquid bridge: identifying regimes and transitions. J. Fluid Mech.
797, 29–59.

Mellado, P., McIlwee, H. A. & Badrossamay, M. A.
2011
A simple model for nanofiber formation by rotary jet-spinning. Appl. Phys. Lett.
99, 203107.

Mikami, T., Cox, R. G. & Mason, S. G.
1975
Breakup of extending liquid threads. Intl J. Multiphase Flow
2, 113–138.

Pearson, J. R. A.
1985
Mechanics of Polymer Processing. Applied Science Publishers.

Rayleigh, Lord
1878
On the instability of jets. Proc. R. Soc. Lond. A
10, 4–12.

Rutland, D. F. & Jameson, G. J.
1970
Theoretical predictions of the sizes of drops formed in the breakup of capillary jets. Chem. Engng Sci.
25, 1689–1698.

Saleh, S. N., Ahmed, S. M., Al-Mosuli, D. & Barghi, S.
2015
Basic design methodology for a prilling tower. Can. J. Chem. Engng
93, 1403–1409.

Sauter, U. S. & Buggisch, H. W.
2005
Stability of initially slow viscous jets driven by gravity. J. Fluid Mech.
533, 237–257.

Senchenko, S. & Bohr, T.
2005
Shape and stability of a viscous thread. Phys. Rev. E
71, 056301.

Senuma, S., Lowe, C., Zweifel, Y., Hilborn, J. G. & Marison, I.
2000
Alginate hydrogelmicrospheres and microcapsules prepared by spinning disk atomization. Biotechnol. Bioengng
67, 616–622.

Senuma, Y. & Hilborn, J. G.
2002
High-speed imaging of drop formation from low viscosity liquids and polymer melts in spinning disk atomization. Polym. Engng Sci.
42, 969–982.

Shikhmurzaev, Y. D.
2005
Capillary breakup of liquid threads: a singularity-free solution. IMA J. Appl. Maths
70, 880–907.

Shikhmurzaev, Y. D.
2007
Capillary Flows with Forming Interfaces. Chapman & Hall.

Shikhmurzaev, Y. D. & Sisoev, G. M.
2017
Spiralling liquid jets: verifiable mathematical framework, trajectories and peristaltic waves. J. Fluid Mech.
819, 352–400.

Wallwork, I. M., Decent, S. P., King, A. C. & Schulkes, R. M. S. M.
2002
The trajectory and stability of a spiralling liquid jet: Part 1. Inviscid theory. J. Fluid Mech.
459, 43–65.

Weber, C.
1931
Zum Zerfall eines Flüssigkeitsstrables. Z. Angew. Math. Mech.
11, 136–154.