Skip to main content Accessibility help

On the breakup of spiralling liquid jets

  • Yuan Li (a1), Grigori M. Sisoev (a2) and Yulii D. Shikhmurzaev (a1)


The generation of drops from a jet spiralling out of a spinning device, under the action of centrifugal force, is considered for the case of small perturbations introduced at the inlet. Close to the inlet, where the disturbances can be regarded as small, their propagation is found to be qualitatively similar to that of a wave propagating down a straight jet stretched by an external body force (e.g. gravity). The dispersion equation has the same parametric dependence on the base flow, but the base flow is, of course, different. Further down the jet, where the amplitude of the disturbances becomes finite and eventually resulting in drop formation, the flow appears to be quite complex. As shown, for the regular/periodic process of drop generation, the wavelength corresponding to the frequency at the inlet, increasing as the wave propagates down the stretching jet, determines, in general, not the volume of the resulting drop but the sum of volumes of the main drop and the satellite droplet that follows the main one. The proportion of the total volume forming the main drop depends on how far down the jet the drops are produced, i.e. on the magnitude of the inlet disturbance. The volume of the main drop is found to be a linear function of the radius of the unperturbed jet evaluated at the point where the drop breaks away from the jet. This radius, and the corresponding velocity of the base flow, have to be found simultaneously with the jet’s trajectory by using a jet-specific non-orthogonal coordinate system described in detail in Shikhmurzaev & Sisoev (J. Fluid Mech., vol. 819, 2017, pp. 352–400). Some characteristic features of the nonlinear dynamics of the drop formation are discussed.


Corresponding author

Email address for correspondence:


Hide All
Ahmed, M. & Youssef, M. S. 2012 Characteristics of mean droplet size produced by spinning disk atomizers. Trans. ASME J. Fluids Engng 134, 071103.
Ahmed, M. & Youssef, M. S. 2014 Influence of spinning cup and disk atomizer configurations on droplet size and velocity characteristics. Chem. Engng Sci. 107, 149157.
Ambravaneswaran, B., Phillips, S. D. & Basaran, O. A. 2000 Theoretical analysis of a dripping faucet. Phys. Rev. Lett. 85, 53325335.
Aziz, A. K. 1972 Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations. Academic Press.
Bechtel, S. E., Carlson, C. D. & Forest, M. G. 1995 Recovery of the Rayleigh capillary instability from slender 1-D inviscid and viscous models. Phys. Fluids 7 (12), 29562971.
Borthakur, M. P., Biswas, G. & Bandyopadhyay, D. 2017 Formation of liquid drops at an orifice and dynamics of pinch-off in liquid jets. Phys. Rev. E 96, 013115.
Castrejón-Pita, J. R., Castrejón-Pita, A. A., Thete, S. S., Sambath, K., Hitchings, I. M., Hinch, J., Lister, J. R. & Basaran, O. A. 2015 Plethora of transitions during breakup of liquid filaments. Proc. Natl Acad. Sci. USA 112, 45824587.
Chakraborty, I., Rubio-Rubio, M., Sevilla, A. & Gordillo, J. M. 2016 Numerical simulation of axisymmetric drop formation using a coupled level set and volume of fluid method. Intl J. Multiphase Flow 84, 5465.
Cheong, B. S. & Howes, T. 2004 Capillary jet instability under the influence of gravity. Chem. Engng Sci. 59, 21452157.
Chesnokov, Y. G. 2000 Nonlinear development of capillary waves in a viscous liquid jet. J. Tech. Phys. 45 (8), 787794.
Decent, S. P., King, A. C., Simmons, M. J. H., Părău, E. I., Wallwork, I. M., Gurney, C. J. & Uddin, J. 2009 The trajectory and stability of a spiralling liquid jet: viscous theory. Appl. Maths Model. 33, 42834302.
Decent, S. P., King, A. C. & Wallwork, I. M. 2002 Free jets spun from a prilling tower. J. Engng Maths 42, 265282.
Entov, V. M. & Yarin, A. L. 1984 The dynamics of thin liquid jets in air. J. Fluid Mech. 140, 91111.
Frankel, I. & Weihs, D. 1985 Stability of a capillary jet with linearly increasing axial velocity (with application to shaped charges). J. Fluid Mech. 155, 289307.
Frankel, I. & Weihs, D. 1987 Influence of viscosity on the capillary instability of a stretching jet. J. Fluid Mech. 185, 361383.
Frost, A. R. 1981 Rotary atomization in the ligament formation mode. J. Agric. Engng Res. 26, 6378.
van Hoeve, W., Gekle, S., Snoeijer, J., Versluis, M., Brenner, M. P. & Lohse, D. 2010 Breakup of diminutive Rayleigh jets. Phys. Fluids 22, 122003.
Huerre, P. & Monkewitz, P. A. 1990 Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22, 473537.
Kistler, S. F. & Scriven, L. E. 1984 Coating flow theory by finite element and asymptotic analysis of the Navier–Stokes system. Intl J. Numer. Meth. Fluids 4, 207229.
Le Dizès, S. & Villermaux, E. 2017 Capillary jet breakup by noise amplification. J. Fluid Mech. 810, 281306.
Leib, S. J. & Goldstein, M. E. 1986a Convective and absolute instability of a viscous liquid jet. Phys. Fluids 29 (4), 952954.
Leib, S. J. & Goldstein, M. E. 1986b The generation of capillary instabilities on a liquid jet. J. Fluid Mech. 168, 479500.
Lenard, P. 1887 Über die Schwingungen fallander Tropfen. Ann. Phys. 30, 209243.
Li, Y., Sisoev, G. M. & Shikhmurzaev, Y. D. 2018 Spinning disk atomization: theory of the ligament regime. Phys. Fluids 30, 092101.
Li, Y. & Sprittles, J. E. 2016 Capillary breakup of a liquid bridge: identifying regimes and transitions. J. Fluid Mech. 797, 2959.
Mellado, P., McIlwee, H. A. & Badrossamay, M. A. 2011 A simple model for nanofiber formation by rotary jet-spinning. Appl. Phys. Lett. 99, 203107.
Mikami, T., Cox, R. G. & Mason, S. G. 1975 Breakup of extending liquid threads. Intl J. Multiphase Flow 2, 113138.
Pearson, J. R. A. 1985 Mechanics of Polymer Processing. Applied Science Publishers.
Rayleigh, Lord 1878 On the instability of jets. Proc. R. Soc. Lond. A 10, 412.
Rutland, D. F. & Jameson, G. J. 1970 Theoretical predictions of the sizes of drops formed in the breakup of capillary jets. Chem. Engng Sci. 25, 16891698.
Saleh, S. N., Ahmed, S. M., Al-Mosuli, D. & Barghi, S. 2015 Basic design methodology for a prilling tower. Can. J. Chem. Engng 93, 14031409.
Sauter, U. S. & Buggisch, H. W. 2005 Stability of initially slow viscous jets driven by gravity. J. Fluid Mech. 533, 237257.
Senchenko, S. & Bohr, T. 2005 Shape and stability of a viscous thread. Phys. Rev. E 71, 056301.
Senuma, S., Lowe, C., Zweifel, Y., Hilborn, J. G. & Marison, I. 2000 Alginate hydrogelmicrospheres and microcapsules prepared by spinning disk atomization. Biotechnol. Bioengng 67, 616622.
Senuma, Y. & Hilborn, J. G. 2002 High-speed imaging of drop formation from low viscosity liquids and polymer melts in spinning disk atomization. Polym. Engng Sci. 42, 969982.
Shikhmurzaev, Y. D. 2005 Capillary breakup of liquid threads: a singularity-free solution. IMA J. Appl. Maths 70, 880907.
Shikhmurzaev, Y. D. 2007 Capillary Flows with Forming Interfaces. Chapman & Hall.
Shikhmurzaev, Y. D. & Sisoev, G. M. 2017 Spiralling liquid jets: verifiable mathematical framework, trajectories and peristaltic waves. J. Fluid Mech. 819, 352400.
Wallwork, I. M., Decent, S. P., King, A. C. & Schulkes, R. M. S. M. 2002 The trajectory and stability of a spiralling liquid jet: Part 1. Inviscid theory. J. Fluid Mech. 459, 4365.
Weber, C. 1931 Zum Zerfall eines Flüssigkeitsstrables. Z. Angew. Math. Mech. 11, 136154.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed