## References

Aoki, K., Sone, Y. & Yamada, T.
1990
Numerical analysis of gas flows condensing on its plane condensed phase on the basis of kinetic theory. Phys. Fluids
2, 1867–1878.

Beskok, A. & Karniadakis, G. E.
1999
A model for flows in channels, pipes, and ducts at micro and nano scales. Microscale Therm. Engng
3, 43–77.

Bhatnagar, P. L., Gross, E. P. & Krook, M.
1954
A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev.
94, 511–525.

Borner, A., Panerai, F. & Mansour, N. N.
2017
High temperature permeability of fibrous materials using direct simulation Monte Carlo. Intl J. Heat Mass Transfer
106, 1318–1326.

Chai, Z., Lu, J., Shi, B. & Guo, Z.
2011
Gas slippage effect on the permeability of circular cylinders in a square array. Intl J. Heat Mass Transfer
54, 3009–3014.

Chapman, S. & Cowling, T. G.
1970
The Mathematical Theory of Non-uniform Gases. Cambridge University Press.

Chu, C. K.
1965
Kinetic-theoretic description of the formation of a shock wave. Phys. Fluids
8, 12.

Civan, F.
2010
Effective correlation of apparent gas permeability in tight porous media. Transp. Porous. Med.
82, 375–384.

Darabi, H., Ettehad, A., Javadpour, F. & Sepehrnoori, K.
2012
Gas flow in ultra-tight shale strata. J. Fluid Mech.
710, 641–658.

Garcia-Colin, L. S., Velasco, R. M. & Uribe, F. J.
2008
Beyond the Navier–Stokes equations: Burnett hydrodynamics. Phys. Rep.
465, 149–189.

Gibelli, L.
2011
A second-order slip model for arbitrary accomodation at the wall. 3rd Micro and Nano Flows. Brunel University.

Grad, H.
1949
On the kinetic theory of rarefied gases. Comm. Pure Appl. Maths
2, 331–407.

Gu, X. J. & Emerson, D. R.
2009
A high-order moment approach for capturing non-equilibrium phenomena in the transition regime. J. Fluid Mech.
636, 177–216.

Gu, X. J., Emerson, D. R. & Tang, G. H.
2010
Analysis of the slip coefficient and defect velocity in the Knudsen layer of a rarefied gas using the linearized moment equations. Phys. Rev. E
81, 016313.

Hadjiconstantinou, N. G.
2003
Comment on Cercignani’s second-order slip coefficient. Phys. Fluids
15, 2352–2354.

Huang, J. C., Xu, K. & Yu, P. B.
2013
A unified gas-kinetic scheme for continuum and rarefied flows III: microflow simulations. Commun. Comput. Phys.
14, 1147–1173.

Karniadakis, G., Beskok, A. & Aluru, N. R.
2005
Microflows and Manoflows: Fundamentals and Simulations. Springer.

Klinkenberg, L. J.
1941
The Permeability of Porous Media to Liquids and Gases. American Petroleum Institute, pp. API–41–200.

Lasseux, D., Valdes Parada, F. J. & Porter, M. L.
2016
An improved macroscale model for gas slip flows in porous media. J. Fluid Mech.
805, 118–146.

Loyalka, S. K., Petrellis, N. & Storvick, T. S.
1975
Some numerical results for the BGK model – thermal creep and viscous slip problems with arbitrary accomodation at the surface. Phys. Fluids
18, 1094–1099.

Lunati, I. & Lee, S. H.
2014
A dual-tube model for gas dynamics in fractured nanoporous shale formations. J. Fluid Mech.
757, 943–971.

Maxwell, J. C.
1879
On stresses in rarefied gases arising from inequalities of temperature. Phil. Trans. R. Soc. 1
170, 231–256.

Moghaddam, R. N. & Jamiolahmady, M.
2016
Slip flow in porous media. Fuel
173, 298–310.

Pan, C., Luo, L. S. & Miller, C. T.
2006
An evaluation of lattice Boltzmann schemes for porous medium flow simulation. Comput. Fluids
35, 898–909.

Sharipov, F. & Graur, I. A.
2012
Rarefied gas flow through a zigzag channel. Vacuum
86, 1778–1782.

Struchtrup, H.
2005
Macroscopic Transport Equations for Rarefied Gas Fows: Approximation Methods in Kinetic Theory. Springer.

Struchtrup, H. & Torrihon, M.
2003
Regularization of Grad’s 13 moment equations: derivation and linear analysis. Phys. Fluids
15, 2668–2680.

Taheri, P., Rana, A. S., Torrilhon, M. & Struchtrup, H.
2009
Macroscopic description of steady and unsteady rarefaction effects in boundary value problems of gas dynamics. Cont. Mech. Theromodyn.
21, 423–443.

Takata, S. & Funagane, H.
2011
Poiseuille and thermal transpiration flows of a highly rarefied gas: over-concentration in the velocity distribution function. J. Fluid Mech.
669, 242–259.

Tang, G. H., Zhai, G. X., Tao, W. Q., Gu, X. J. & Emerson, D. R.
2013
Extended thermodynamic approach for non-equilibrium gas flow. Commun. Comput. Phys.
13, 1330–1356.

Torrilhon, M.
2016
Modeling nonequilibrium gas flow based on moment equations. Annu. Rev. Fluid Mech.
48, 429–458.

Wang, Q., Chen, X., Jha, A. & Rogers, H.
2014
Natural gas from shale formation – the evolution, evidences and challenges of shale gas revolution in United States. Renew. Sust. Energ. Rev.
30, 1–28.

Wu, L., Reese, J. M. & Zhang, Y. H.
2014
Solving the Boltzmann equation by the fast spectral method: application to microflows. J. Fluid Mech.
746, 53–84.

Wu, L., White, C., Scanlon, T. J., Reese, J. M. & Zhang, Y. H.
2013
Deterministic numerical solutions of the Boltzmann equation using the fast spectral method. J. Comput. Phys.
250, 27–52.

Zhu, Y., Zhong, C. & Xu, K.
2016
Implicit unified gas-kinetic scheme for steady state solutions in all flow regimes. J. Comput. Phys.
315, 16–38.