Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-02T22:14:27.377Z Has data issue: false hasContentIssue false

On non-Oberbeck–Boussinesq effects in three-dimensional Rayleigh–Bénard convection in glycerol

Published online by Cambridge University Press:  29 April 2013

Susanne Horn*
Affiliation:
Institute of Aerodynamics and Flow Technology, German Aerospace Center (DLR), Bunsenstraße 10, 37073 Göttingen, Germany
Olga Shishkina
Affiliation:
Institute of Aerodynamics and Flow Technology, German Aerospace Center (DLR), Bunsenstraße 10, 37073 Göttingen, Germany
Claus Wagner
Affiliation:
Institute of Aerodynamics and Flow Technology, German Aerospace Center (DLR), Bunsenstraße 10, 37073 Göttingen, Germany
*
Email address for correspondence: susanne.horn@dlr.de

Abstract

Rayleigh–Bénard convection in glycerol (Prandtl number $\mathit{Pr}= 2547. 9$) in a cylindrical cell with an aspect ratio of $\Gamma = 1$ was studied by means of three-dimensional direct numerical simulations (DNS). For that purpose, we implemented temperature-dependent material properties into our DNS code, by prescribing polynomial functions up to seventh order for the viscosity, the heat conductivity and the density. We performed simulations with the common Oberbeck–Boussinesq (OB) approximation and with non-Oberbeck–Boussinesq (NOB) effects within a range of Rayleigh numbers of $1{0}^{5} \leq \mathit{Ra}\leq 1{0}^{9} $. For the highest temperature differences, $\Delta = 80~\mathrm{K} $, the viscosity at the top is ${\sim }360\hspace{0.167em} \% $ times higher than at the bottom, while the differences of the other material properties are less than $15\hspace{0.167em} \% $. We analysed the temperature and velocity profiles and the thermal and viscous boundary-layer thicknesses. NOB effects generally lead to a breakdown of the top–bottom symmetry, typical for OB Rayleigh–Bénard convection. Under NOB conditions, the temperature in the centre of the cell ${T}_{c} $ increases with increasing $\Delta $ and can be up to $15~\mathrm{K} $ higher than under OB conditions. The comparison of our findings with several theoretical and empirical models showed that two-dimensional boundary-layer models overestimate the actual ${T}_{c} $, while models based on the temperature or velocity scales predict ${T}_{c} $ very well with a standard deviation of $0. 4~\mathrm{K} $. Furthermore, the obtained temperature profiles bend closer towards the cold top plate and further away from the hot bottom plate. The situation for the velocity profiles is reversed: they bend farther away from the top plate and closer towards to the bottom plate. The top boundary layers are always thicker than the bottom ones. Their ratio is up to 2.5 for the thermal and up to 4.5 for the viscous boundary layers. In addition, the Reynolds number $\mathit{Re}$ and the Nusselt number $\mathit{Nu}$ were investigated: $\mathit{Re}$ is higher and $\mathit{Nu}$ is lower under NOB conditions. The Nusselt number $\mathit{Nu}$ is influenced in a nonlinear way by NOB effects, stronger than was suggested by the two-dimensional simulations. The actual scaling of $\mathit{Nu}$ with $\mathit{Ra}$ in the NOB case is $\mathit{Nu}\propto {\mathit{Ra}}^{0. 298} $ and is in excellent agreement with the experimental data.

Type
Papers
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlers, G., Brown, E., Fontenele Araujo, F., Funfschilling, D., Grossmann, S. & Lohse, D. 2006 Non-Oberbeck–Boussinesq effects in strongly turbulent Rayleigh–Bénard convection. J. Fluid Mech. 569, 409445.Google Scholar
Ahlers, G., Fontenele Araujo, F., Funfschilling, D., Grossmann, S. & Lohse, D. 2007 Non-Oberbeck–Boussinesq effects in gaseous Rayleigh–Bénard convection. Phys. Rev. Lett. 98, 054501.Google Scholar
Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large-scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81 (2), 503537.Google Scholar
Boussinesq, J. 1903 Théorie analytique de la chaleur. Gauthier-Villars.Google Scholar
Breuer, M., Wessling, S., Schmalzl, J. & Hansen, U. 2004 Effect of inertia in Rayleigh–Bénard convection. Phys. Rev. E 69 (2), 26302.CrossRefGoogle ScholarPubMed
Burnishev, Y., Segre, E. & Steinberg, V. 2010 Strong symmetrical non-Oberbeck–Boussinesq turbulent convection and the role of compressibility. Phys. Fluids 22 (3), 035108.Google Scholar
Busse, F. H. 1967 The stability of finite amplitude cellular convection and its relation to an extremum principle. J. Fluid Mech. 30, 625649.Google Scholar
Busse, F. H. 1978 Non-linear properties of thermal convection. Rep. Prog. Phys. 41, 19291967.Google Scholar
Busse, F. H. 1979 High Prandtl number convection. Phys. Earth Planet. Inter. 19, 149157.CrossRefGoogle Scholar
Castaing, B., Gunaratne, G., Kadanoff, L., Libchaber, A. & Heslot, F. 1989 Scaling of hard thermal turbulence in Rayleigh–Bénard convection. J. Fluid Mech. 204, 130.Google Scholar
Christensen, U. & Harder, H. 1991 3-D convection with variable viscosity. Geophys. J. Intl 104, 213226.Google Scholar
Constantin, P. & Doering, C. R. 1999 Infinite Prandtl number convection. J. Stat. Phys. 94 (1/2), 159172.Google Scholar
Getling, A. V. 1998 Rayleigh–Bénard Convection: Structures and Dynamics. World Scientific.Google Scholar
Gray, D. D. & Giorgini, A. 1976 The validity of the Boussinesq approximation for liquids and gases. Intl J. Heat Mass Transfer 19, 545551.CrossRefGoogle Scholar
Grossmann, S. & Lohse, D. 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 2756.CrossRefGoogle Scholar
Grossmann, S. & Lohse, D. 2001 Thermal convection for large Prandtl numbers. Phys. Rev. Lett. 86 (15), 33163319.Google Scholar
Grossmann, S. & Lohse, D. 2002 Prandtl and Rayleigh number dependence of the Reynolds number in turbulent thermal convection. Phys. Rev. E 66 (1), 16305.Google Scholar
Horn, S., Shishkina, O. & Wagner, C. 2011 The influence of non-Oberbeck–Boussinesq effects on rotating turbulent Rayleigh–Bénard convection. J. Phys.: Conf. Ser. 318, 082005.Google Scholar
Krishnamurti, R. & Howard, L. N. 1981 Large-scale flow generation in turbulent convection. Proc. Natl Acad. Sci. USA 78 (4), 445455.Google Scholar
Manga, M. & Weeraratne, D. 1999 Experimental study of non-Boussinesq Rayleigh–Bénard convection at high Rayleigh and Prandtl numbers. Phys. Fluids 11 (10), 29692976.Google Scholar
Oberbeck, A. 1879 Ueber die Wärmeleitung der Flüssigkeiten bei Berücksichtigung der Strömungen infolge von Temperaturdifferenzen. Ann. Phys. 243 (6), 271292.Google Scholar
Ogawa, M., Schubert, G. & Zebib, A. 1991 Numerical simulations of three-dimensional thermal convection in a fluid with strongly temperature-dependent viscosity. J. Fluid Mech. 233, 299328.CrossRefGoogle Scholar
Schmalzl, J., Breuer, M. & Hansen, U. 2004 On the validity of two-dimensional numerical approaches to time-dependent thermal convection. Europhys. Lett. 67 (3), 390396.CrossRefGoogle Scholar
Schmitt, L. & Friedrich, R. 1988 Large-eddy simulation of turbulent backward facing step flow. In 7th GAMM-Conference on Numerical Methods in Fluid Mechanics, pp. 355362. Vieweg und Sohn.Google Scholar
Schumann, U. 1975 Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J. Comput. Phys. 18 (4), 376404.Google Scholar
Segur, J. B. & Oberstar, H. E. 1951 Viscosity of glycerol and its aqueous solutions. Ind. Engng Chem. 43, 21172120.Google Scholar
Shishkina, O., Stevens, R. J. A. M., Grossmann, S. & Lohse, D. 2010 Boundary layer structure in turbulent thermal convection and its consequences for the required numerical resolution. New J. Phys. 12, 075022.Google Scholar
Shishkina, O. & Wagner, C. 2005 A fourth order accurate finite volume scheme for numerical simulations of turbulent Rayleigh–Bénard convection in cylindrical containers. C. R. Mecanique 333, 1728.CrossRefGoogle Scholar
Shishkina, O. & Wagner, C. 2006 Analysis of thermal dissipation rates in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 546, 5160.Google Scholar
Shishkina, O. & Wagner, C. 2007a Boundary and interior layers in turbulent thermal convection in cylindrical containers. Intl J. Comput. Sci. Math. 1, 360373.Google Scholar
Shishkina, O. & Wagner, C. 2007b A fourth order finite volume scheme for turbulent flow simulations in cylindrical domains. Comput. Fluids 36, 484497.Google Scholar
Silano, G., Sreenivasan, K. & Verzicco, R. 2010 Numerical simulations of Rayleigh–Bénard convection for Prandtl numbers between $1{0}^{- 1} $ and $1{0}^{4} $ and Rayleigh numbers between $1{0}^{5} $ and $1{0}^{9} $ . J. Fluid Mech. 662, 409446.Google Scholar
Stevens, R. J. A. M., Verzicco, R. & Lohse, D. 2010 Radial boundary layer structure and Nusselt number in Rayleigh–Bénard convection. J. Fluid Mech. 643, 495507.Google Scholar
Sugiyama, K., Calzavarini, E., Grossmann, S. & Lohse, D. 2007 Non-Oberbeck–Boussinesq effects in two-dimensional Rayleigh–Bénard convection in glycerol. Europhys. Lett. 80, 34002.Google Scholar
Sugiyama, K., Calzavarini, E., Grossmann, S. & Lohse, D. 2009 Flow organization in two-dimensional non-Oberbeck–Boussinesq Rayleigh–Bénard convection in water. J. Fluid Mech. 637, 105135.Google Scholar
Wagner, S., Shishkina, O. & Wagner, C. 2012 Boundary layers and wind in cylindrical Rayleigh–Bénard cells. J. Fluid Mech. 697, 336363.Google Scholar
Wu, X. Z. & Libchaber, A. 1991 Non-Boussinesq effects in free thermal convection. Phys. Rev. A 43 (6), 28332839.CrossRefGoogle ScholarPubMed
Xia, Ke-Qing, Lam, Siu & Zhou, Sheng-Qi 2002 Heat-flux measurement in high-Prandtl-number turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 88, 064501.Google Scholar
Zhang, J., Childress, S. & Libchaber, A. 1997 Non-Boussinesq effect: thermal convection with broken symmetry. Phys. Fluids 9 (4), 10341042.Google Scholar
Zhang, J., Childress, S. & Libchaber, A. 1998 Non-Boussinesq effect: asymmetric velocity profiles in thermal convection. Phys. Fluids 10, 15341536.CrossRefGoogle Scholar