Skip to main content Accessibility help

Numerical investigation of shear-flow free-surface turbulence and air entrainment at large Froude and Weber numbers

  • Xiangming Yu (a1), Kelli Hendrickson (a1), Bryce K. Campbell (a1) and Dick K. P. Yue (a1)


We investigate two-phase free-surface turbulence (FST) associated with an underlying shear flow under the condition of strong turbulence (SFST) characterized by large Froude ( $Fr$ ) and Weber ( $We$ ) numbers. We perform direct numerical simulations of three-dimensional viscous flows with air and water phases. In contrast to weak FST (WFST) with small free-surface distortions and anisotropic underlying turbulence with distinct inner/outer surface layers, we find SFST to be characterized by large surface deformation and breaking accompanied by substantial air entrainment. The interface inner/outer surface layers disappear under SFST, resulting in nearly isotropic turbulence with ${\sim}k^{-5/3}$ scaling of turbulence kinetic energy near the interface (where $k$ is wavenumber). The SFST air entrainment is observed to occur over a range of scales following a power law of slope $-10/3$ . We derive this using a simple energy argument. The bubble size spectrum in the volume follows this power law (and slope) initially, but deviates from this in time due to a combination of ongoing broad-scale entrainment and bubble fragmentation by turbulence. For varying $Fr$ and $We$ , we find that air entrainment is suppressed below critical values $Fr_{cr}$ and $We_{cr}$ . When $Fr^{2}>Fr_{cr}^{2}$ and $We>We_{cr}$ , the entrainment rate scales as $Fr^{2}$ when gravity dominates surface tension in the bubble formation process, while the entrainment rate scales linearly with $We$ when surface tension dominates.


Corresponding author

Email address for correspondence:


Hide All
André, M. A. & Bardet, P. M. 2017 Free surface over a horizontal shear layer: vorticity generation and air entrainment mechanisms. J. Fluid Mech. 813, 10071044.
Borue, V., Orszag, S. A. & Staroselsky, I. 1995 Interaction of surface waves with turbulence: direct numerical simulations of turbulent open-channel flow. J. Fluid Mech. 286, 123.
Brackbill, J. U., Kothe, D. B. & Zemach, C. 1992 A continuum method for modeling surface tension. J. Comput. Phys. 100 (2), 335354.
Brocchini, M. 2002 Free surface boundary conditions at a bubbly/weakly splashing air–water interface. Phys. Fluids 14 (6), 18341840.
Brocchini, M. & Peregrine, D. H. 2001a The dynamics of strong turbulence at free surfaces. Part 1. Description. J. Fluid Mech. 449, 225254.
Brocchini, M. & Peregrine, D. H. 2001b The dynamics of strong turbulence at free surfaces. Part 2. Free-surface boundary conditions. J. Fluid Mech. 449, 255290.
Campbell, B. K.2015 A mechanistic investigation of nonlinear interfacial instabilities leading to slug formation in multiphase flows. PhD thesis, Massachusetts Institute of Technology.
Chachereau, Y. & Chanson, H. 2011 Free-surface fluctuations and turbulence in hydraulic jumps. Exp. Therm. Fluid Sci. 35 (6), 896909.
Chanson, H. & Toombes, L. 2003 Strong interactions between free-surface aeration and turbulence in an open channel flow. Exp. Therm. Fluid Sci. 27 (5), 525535.
Cormen, T. H., Leiserson, C. E., Rivest, R. L. & Stein, C. 2009 Introduction to Algorithms. MIT Press.
Deane, G. B. & Stokes, M. D. 2002 Scale dependence of bubble creation mechanisms in breaking waves. Nature 418 (6900), 839844.
Deike, L., Melville, W. K. & Popinet, S. 2016 Air entrainment and bubble statistics in breaking waves. J. Fluid Mech. 801, 91129.
Falgout, R. D., Jones, J. E. & Yang, U. M. 2006 The design and implementation of hypre, a library of parallel high performance preconditioners. In Numerical Solution of Partial Differential Equations on Parallel Computers, pp. 267294. Springer.
Falgout, R. D. & Yang, U. M. 2002 hypre: A library of high performance preconditioners. In Computational Science – ICCS 2002, pp. 632641. Springer.
Fulgosi, M., Lakehal, D., Banerjee, S. & De Angelis, V. 2003 Direct numerical simulation of turbulence in a sheared air–water flow with a deformable interface. J. Fluid Mech. 482, 319345.
Garrett, C., Li, M. & Farmer, D. 2000 The connection between bubble size spectra and energy dissipation rates in the upper ocean. J. Phys. Oceanogr. 30 (9), 21632171.
Guo, X. & Shen, L. 2010 Interaction of a deformable free surface with statistically steady homogeneous turbulence. J. Fluid Mech. 658, 3362.
Handler, R. A., Swean, T. F., Leighton, R. I. & Swearingen, J. D. 1993 Length scales and the energy balance for turbulence near a free surface. AIAA J. 31 (11), 19982007.
Hong, W. L. & Walker, D. T. 2000 Reynolds-averaged equations for free-surface flows with application to high-Froude-number jet spreading. J. Fluid Mech. 417, 183209.
Hunt, J. C. R., Stretch, D. D. & Belcher, S. E. 2011 Viscous coupling of shear-free turbulence across nearly flat fluid interfaces. J. Fluid Mech. 671, 96120.
Liu, S., Kermani, A., Shen, L. & Yue, D. K. P. 2009 Investigation of coupled air–water turbulent boundary layers using direct numerical simulations. Phys. Fluids 21 (6), 062108.
Lundgren, T. S.2003 Linearly forced isotropic turbulence. Tech. Rep. Minnesota Univ. Minneapolis.
Mattingly, G. E. & Criminale, W. O. 1972 The stability of an incompressible two-dimensional wake. J. Fluid Mech. 51 (2), 233272.
Morales, J. J., Nuevo, M. J. & Rull, L. F. 1990 Statistical error methods in computer simulations. J. Comput. Phys. 89 (2), 432438.
Mortazavi, M., Le Chenadec, V., Moin, P. & Mani, A. 2016 Direct numerical simulation of a turbulent hydraulic jump: turbulence statistics and air entrainment. J. Fluid Mech. 797, 6094.
Murzyn, F., Mouaze, D. & Chaplin, J. R. 2007 Air–water interface dynamic and free surface features in hydraulic jumps. J. Hydraul Res. 45 (5), 679685.
Nagaosa, R. 1999 Direct numerical simulation of vortex structures and turbulent scalar transfer across a free surface in a fully developed turbulence. Phys. Fluids 11 (6), 15811595.
Pan, Y. & Banerjee, S. 1995 A numerical study of free-surface turbulence in channel flow. Phys. Fluids 7 (7), 16491664.
Pope, S. B. 2001 Turbulent Flows. Cambridge University Press.
Popinet, S. 2009 An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228 (16), 58385866.
Prosperetti, A. 1981 Motion of two superposed viscous fluids. Phys. Fluids 24 (7), 12171223.
Rogers, M. M. & Moin, P. 1987 The structure of the vorticity field in homogeneous turbulent flows. J. Fluid Mech. 176, 3366.
Savelsberg, R. & van de Water, W. 2008 Turbulence of a free surface. Phys. Rev. Lett. 100 (3), 034501.
Savelsberg, R. & van de Water, W. 2009 Experiments on free-surface turbulence. J. Fluid Mech. 619, 95125.
Shen, L., Triantafyllou, G. S. & Yue, D. K. P. 2000 Turbulent diffusion near a free surface. J. Fluid Mech. 407, 145166.
Shen, L., Triantafyllou, G. S. & Yue, D. K. P. 2001 Mixing of a passive scalar near a free surface. Phys. Fluids 13 (4), 913926.
Shen, L. & Yue, D. K. P. 2001 Large-eddy simulation of free-surface turbulence. J. Fluid Mech. 440, 75116.
Shen, L., Zhang, X., Yue, D. K. P. & Triantafyllou, G. S. 1999 The surface layer for free-surface turbulent flows. J. Fluid Mech. 386, 167212.
Smolentsev, S. & Miraghaie, R. 2005 Study of a free surface in open-channel water flows in the regime from ‘weak’ to ‘strong’ turbulence. Intl J. Multiphase Flow 31 (8), 921939.
Walker, D. T., Chen, C.-Y. & Willmarth, W. W. 1995 Turbulent structure in free-surface jet flows. J. Fluid Mech. 291, 223261.
Walker, D. T., Leighton, R. I. & Garza-Rios, L. O. 1996 Shear-free turbulence near a flat free surface. J. Fluid Mech. 320, 1951.
Wang, Z., Yang, J. & Stern, F. 2016 High-fidelity simulations of bubble, droplet and spray formation in breaking waves. J. Fluid Mech. 792, 307327.
Weymouth, G. D. & Yue, D. K. P. 2010 Conservative volume-of-fluid method for free-surface simulations on cartesian-grids. J. Comput. Phys. 229 (8), 28532865.
Yamamoto, Y. & Kunugi, T. 2011 Direct numerical simulation of a high-Froude-number turbulent open-channel flow. Phys. Fluids 23 (12), 125108.
Yu, X., Hendrickson, K. & Yue, D. K. P. 2016 Air entrainment in free-surface turbulence. In Proc. 31st Symposium on Naval Hydrodynamics, Monterey, CA, USA.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Numerical investigation of shear-flow free-surface turbulence and air entrainment at large Froude and Weber numbers

  • Xiangming Yu (a1), Kelli Hendrickson (a1), Bryce K. Campbell (a1) and Dick K. P. Yue (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed