Skip to main content Accessibility help

A numerical evaluation of the asymptotic theory of receptivity for subsonic compressible boundary layers

  • Nicola De Tullio (a1) and Anatoly I. Ruban (a1)


The capabilities of the triple-deck theory of receptivity for subsonic compressible boundary layers have been thoroughly investigated through comparisons with numerical simulations of the compressible Navier–Stokes equations. The analysis focused on the two Tollmien–Schlichting wave linear receptivity problems arising due to the interaction between a low-amplitude acoustic wave and a small isolated roughness element, and the low-amplitude time-periodic vibrations of a ribbon placed on the wall of a flat plate. A parametric study was carried out to look at the effects of roughness element and vibrating ribbon longitudinal dimensions, Reynolds number, Mach number and Tollmien–Schlichting wave frequency. The flat plate is considered isothermal, with a temperature equal to the laminar adiabatic-wall temperature. Numerical simulations of the full and the linearised compressible Navier–Stokes equations have been carried out using high-order finite differences to obtain, respectively, the steady basic flows and the unsteady disturbance fields for the different flow configurations analysed. The results show that the asymptotic theory and the Navier–Stokes simulations are in good agreement. The initial Tollmien–Schlichting wave amplitudes and, in particular, the trends indicated by the theory across the whole parameter space are in excellent agreement with the numerical results. An important finding of the present study is that the behaviour of the theoretical solutions obtained for $\mathit{Re}\rightarrow \infty$ holds at finite Reynolds numbers and the only conditions needed for the theoretical predictions to be accurate are that the receptivity process be linear and the free-stream Mach number be subsonic.


Corresponding author

Email address for correspondence:


Hide All
Balakumar, P. & Malik, M. R. 1992 Discrete modes and continuous spectra in supersonic boundary layers. J. Fluid Mech. 239, 631656.
Borodulin, V. I., Ivanov, A. V., Kachanov, Y. S. & Roschektaev, A. P. 2013 Receptivity coefficients at excitation of cross-flow waves by free-stream vortices in the presence of surface roughness. J. Fluid Mech. 716, 487527.
Carpenter, M. H., Nordstrom, J. & Gottlieb, D. 1999 A stable and conservative interface treatment of arbitrary spatial accuracy. J. Comput. Phys. 148, 341365.
Choudhari, M. & Street, C. L. 1992 A finite Reynolds-number approach for the prediction of boundary-layer receptivity in localized regions. Phys. Fluids A 4 (11), 24952514.
Crouch, J. D. 1992 Localized receptivity of boundary layers. Phys. Fluids A 4 (7), 14081414.
Denier, J. P., Hall, P. & Seddougui, S. O. 1991 On the receptivity problem for Görtler vortices: vortex motion induced by wall roughness. Phil. Trans. R. Soc. Lond. A 335, 5185.
De Tullio, N.2013 Receptivity and transition to turbulence of supersonic boundary layers with surface roughness. PhD thesis, School of Engineering Sciences, University of Southampton.
De Tullio, N., Paredes, P., Sandham, N. D. & Theofilis, V. 2013 Laminar–turbulent transition induced by a discrete roughness element in a supersonic boundary layer. J. Fluid Mech. 735, 613646.
De Tullio, N. & Sandham, N. D. 2010 Direct numerical simulation of breakdown to turbulence in a mach 6 boundary layer over a porous surface. Phys. Fluids 22, 094105.
Dietz, A. J. 1999 Local boundary-layer receptivity to a convected free-stream disturbance. J. Fluid Mech. 378, 291317.
Duck, P. W., Ruban, A. I. & Zhikharev, C. N. 1996 The generation of Tollmien–Schlichting waves by free stream turbulence. J. Fluid Mech. 312, 341371.
Fucciarelli, D., Reed, H. & Lyttle, I. 2000 Direct numerical simulation of leading-edge receptivity to sound. AIAA J. 38 (7), 11591165.
Goldstein, M. E. 1985 Scattering of acoustic waves into Tollmien–Schlichting waves by small streamwise variations in surface geometry. J. Fluid Mech. 154, 509529.
Goldstein, M. & Hultgren, L. S. 1987 A note on the generation of Tollmien–Schlichting waves by sudden surface-curvature change. J. Fluid Mech. 181, 519525.
Jones, R. D., Sandberg, R. D. & Sandham, N. D. 2010 Stability and receptivity characteristics of a laminar separation bubble on an aerofoil. J. Fluid Mech. 648, 257296.
Kachanov, Y. S. 1994 Physical mechanisms of laminar-boundary-layer transition. Annu. Rev. Fluid Mech. 26, 411482.
Kachanov, K., Kozlov, V. V. & Levchenko, V. Y. 1979 Origin of Tollmien–Schlichting waves in boundary layer under the influence of external disturbances. Fluid Dyn. 13, 704711.
Kerimbekov, R. M. & Ruban, A. I. 2005 Receptivity of boundary layers to distributed wall vibrations. Phil. Trans. R. Soc. Lond. A 363, 11451155.
Kozlov, V. V. & Ryzhov, O. S. 1990 Receptivity of boundary layers: asymptotic theory and experiment. Phil. Trans. R. Soc. Lond. A 429, 341373.
Lin, C. C. 1946 On the stability of two-dimensional parallel flows. Part 3. Stability in a viscous fluid. Q. Appl. Maths 3, 277301.
Reshotko, E. 1976 Boundary layer stability and transition. Annu. Rev. Fluid Mech. 8, 311349.
Reynolds, O. 1883 An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Phil. Trans. R. Soc. Lond. 174, 935982.
Ruban, A. I. 1984 On the generation of Tollmien–Schlichting waves by sound. Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza 5, 4452; translation in Fluid Dyn. 19 (5), 709–717, 1984.
Ruban, A. I., Bernots, T. & Pryce, D. 2013 Receptivity of the boundary layer to vibrations of the wing surface. J. Fluid Mech. 723, 480528.
Sandham, N. D., Li, Q. & Yee, H. C. 2002 Entropy splitting for high-order numerical simulation of compressible turbulence. J. Comput. Phys. 178, 307322.
Saric, W. S., Hoos, J. A. & Radeztsky, R. H. 1991 Boundary-layer receptivity of sound with roughness. In Boundary Layer Stability and Transition to Turbulence (ed. Reda, D. C., Reed, H. L. & Kobayashi, R.), FED, vol. 114, pp. 1722. ASME.
Saric, W. S., Reed, H. L. & Kerschen, E. J. 2002 Boundary-layer receptivity to freestream disturbances. Annu. Rev. Fluid Mech. 34, 291319.
Saric, W. S. & White, E. B.1998 Influence of high-amplitude noise on boundary-layer transition to turbulence. AIAA Paper 98-2645.
Schubauer, G. B. & Skramstad, H. K.1948 Laminar boundary layer oscillations and transition on a flat plate. NACA Tech. Rep. 909.
Smith, F. T. 1979a Nonlinear stability of boundary layers for disturbances of various sizes. Proc. R. Soc. Lond. A 368, 573589.
Smith, F. T. 1979b On the nonparallel flow stability of the Blasius boundary layer. Proc. R. Soc. Lond. A 366, 91109.
Tempelmann, D., Schrader, L. U., Hanifi, A., Brandt, L. & Henningson, D. S. 2012 Swept wing boundary-layer receptivity to localized surface roughness. J. Fluid Mech. 711, 516544.
Terent’ev, E. D. 1981 Linear problem of a vibrator in subsonic boundary layer. Prikl. Mat. Mekh. 45, 10491055; translation in Appl. Math. Mech. 45 (6), 791–795, 1981.
Thomson, K. W. 1987 Time dependent boundary conditions for hyperbolic systems. J. Comput. Phys. 68, 124.
Thomson, K. W. 1990 Time dependent boundary conditions for hyperbolic systems, II. J. Comput. Phys. 89, 439461.
Wanderley, J. B. & Corke, T. C. 2001 Boundary layer receptivity to free-stream sound on elliptic leading edges of flat plates. J. Fluid Mech. 429, 121.
White, F. M. 2005 Viscous Fluid Flow, 3rd edn. McGraw-Hill.
Wray, A. A.1990 Minimal storage time advancement schemes for spectral methods. Rep. M.S. 202 A-1. NASA Ames Research Centre.
Wu, X. 2001 Receptivity of boundary layers with distributed roughness to vortical and acoustic disturbances; a second-order theory and comparisons with experiments. J. Fluid Mech. 431, 91133.
Wu, X., Zhao, D. & Luo, J. 2011 Excitation of steady and unsteady Görtler vortices by free stream vortical disturbances. J. Fluid Mech. 682, 66100.
Zhigulev, V. N. & Fedorov, A. V. 1987 Boundary-layer receptivity to acoustic disturbances. J. Appl. Mech. Tech. Phys. 28 (1), 2834.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

A numerical evaluation of the asymptotic theory of receptivity for subsonic compressible boundary layers

  • Nicola De Tullio (a1) and Anatoly I. Ruban (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed