Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T10:10:02.177Z Has data issue: false hasContentIssue false

A numerical bifurcation study of natural convection in a tilted two-dimensional porous cavity

Published online by Cambridge University Press:  26 April 2006

D. S. Riley
Affiliation:
School of Mathematics, University of Bristol, Bristol BS8 1TW, UK
K. H. Winters
Affiliation:
Theoretical Physics Division, Harwell Laboratory, Didcot, Oxon OX11 0RA, UK

Abstract

Techniques derived from bifurcation theory are used to study the porous-medium analogue of the classical Rayleigh–Bénard problem, Lapwood convection in a two-dimensional saturated porous cavity heated from below. The objective of the study is the explanation of how the multiplicity of solutions observed for lower boundary heating evolves to an apparently unique solution for sidewall heating. The change in boundary conditions from floor to sidewall heating can be effected by smoothly tilting the cavity through 90°. The present study aims to demonstrate the mechanisms that reduce the multiplicity for increasing tilt angle.

The many solutions in the untilted cavity arise from a complex bifurcation structure. The effect of tilting the cavity is to unfold all bifurcations, except those that break the centro-symmetry, and so to create branches disconnected from the primary flow. As the angle of tilt, ϕ, increases most of the limit points at which these branches arise move to higher Rayleigh number Ra. Unexpectedly, for a square cavity, the critical Rayleigh number of the most important limit point (that gives rise to an anomalous stable unicellular flow) is found to be almost independent of the angle of tilt. Moreover the two branches arising at this limit point merge again at higher Rayleigh number to form a continuous closed loop, or isola. As the tilt increases, the upper limit point approaches the lower one until they coalesce at an isola formation point at a critical angle ϕc of 10.72°, the maximum angle at which this anomalous mode can exist. Symmetry-breaking bifurcations destabilize part of the branch and determine a smaller critical angle of 10.23°, the maximum angle for which the anomalous mode is stable. At very small angles of tilt, the path of limit points forms the expected cusp catastrophe in the (ϕ, Ra)-plane and at larger angles the path itself turns back at the isola formation point.

The results reveal as too simplistic the conjecture that the reduction of multiplicity for increasing tilt derives from the movement of disconnected branches to increasingly higher Rayleigh number. The predicted collapse and disappearance of branches at an isola formation point is a further novel mechanism which ensures that only the unicellular primary branch remains at a tilt of 90°, in accord with the expected uniqueness of the flow in a square cavity with sidewall heating.

Type
Research Article
Copyright
© 1990 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aidun, C. K. & Steen, P. H. 1987 Transition to oscillatory convective heat transfer in a fluid-saturated porous medium. J. Thermophys. 1, 268.Google Scholar
Beck, J. L. 1972 Convection in a box of porous material saturated with fluid. Phys. Fluids 15, 1377.Google Scholar
Benjamin, T. B. 1978 Bifurcation phenomena in steady flows of a viscous fluid. Proc. R. Soc. Lond. A 59, 1.Google Scholar
Bories, S. A. 1985 Natural convection in porous media. In Proc. of NATO ASI on Fundamentals of Transport Phenomena in Porous Media.
Bories, S. A. & Combarnous, M. A. 1973 Natural convection in a sloping porous layer. J. Fluid Mech. 57, 63.Google Scholar
Bories, S. A., Combarnous, M. A. & Jaffrennou, J. Y. 1972 Observation des différentes formes d'écoulements convectifs dans une couche poreuse inclinée. CR Acad. Sci. Paris A 275, 857.Google Scholar
Bories, S. A. & Monferran, L. 1972 Conditions de stabilité et échanges thermiques par convection naturelle dans une couche poreuse inclinée de grande extension. CR Acad. Sci. Paris B 274, 4.Google Scholar
Caltagirone, J. P. & Bories, S. A. 1980 Solutions numériques bidimensionelles et tridimensionelles de l'écoulement de convection naturelle dans une couche poreuse inclinée. CR Acad. Sci. Paris B 190, 197.Google Scholar
Caltagirone, J. P. & Bories, S. 1985 Solutions and stability criteria of natural convective flow in an inclined porous layer. J. Fluid Mech. 155, 267.Google Scholar
Caltagirone, J. P., Cloupeau, M. & Combarnous, M. A. 1971 Convection naturelle fluctuante dans une couche poreuse horizontale. CR Acad. Sci. Paris B 273, 833.Google Scholar
Chan, B. K. C., Ivey, C. M. & Barry, J. M. 1970 Natural convection in enclosed porous media with rectangular boundaries. Trans. ASME C: J. Heat Transfer 92, 21.Google Scholar
Golubitsky, M. & Schaeffer, D. G. 1985 Singularities and Groups in Bifurcation Theory. Part I. Springer.
Griewank, A. & Reddien, G. 1983 The calculation of Hopf points by a direct method. IMA J. Numer. Anal. 3, 295.Google Scholar
Hollard, S. 1984 Structure thermoconvectives stationnaires dans une couche poreuse plane inclinée de grande extension. Thèse de Docteur-Ingénieur, Institut National Polytechnique de Toulouse.
Holst, P. H. & Aziz, K. 1972 A theoretical and experimental study of natural convection in a confined porous medium. Can. J. Chem. Engng 50, 232.Google Scholar
Impey, M. D., Riley, D. S. & Winters, K. H. 1990 The effect of sidewall imperfections on pattern formation in Lapwood convection. Nonlinearity 3, 197.Google Scholar
Jaffrennou, J. Y. & Bories, S. A. 1974 Convection naturelle dans une couche poreuse inclinée: influence des effets d'extrémité sur les conditions de stabilité. Rapport interne GE14. Institut de Mécanique des Fluides de Toulouse.
Jepson, A. D. 1981 Numerical Hopf bifurcation. Thesis, Part 2, California Institute of Technology, Pasadena, California, USA.
Kaneko, T. 1972 An experimental investigation of natural convection in porous media. M.Sc. Thesis, University of Calgary.
Kaneko, T., Mohtadi, M. F. & Aziz, K. 1974 An experimental study of natural convection in inclined porous media. Intl J. Heat Mass Transfer 17, 485.Google Scholar
Keller, H. B. 1977 Numerical solutions of bifurcation and nonlinear eigenvalue problems. Applications of Bifurcation Theory (ed. P. H. Rabinowitz), pp. 359384. Academic.
Kimura, S., Schubert, G. & Straus, J. M. 1987 Instabilities of steady, periodic, and quasiperiodic modes of convection in porous media. Trans. ASME C: J. Heat Transfer 109, 350.Google Scholar
Moya, S. L., Ramos, E. & Sen, M. 1987 Numerical study of natural convection in a tilted rectangular porous material. Intl J. Heat Mass Transfer 30, 741.Google Scholar
Riley, D. S. & Winters, K. H. 1987 The onset of convection in a porous medium: a preliminary study. Harwell Rep. R 12586.
Riley, D. S. & Winters, K. H. 1989 Modal exchange mechanisms in Lapwood convection. J. Fluid Mech. 204, 325.Google Scholar
Schaeffer, D. G. 1980 Qualitative analysis of a model for boundary effects in the Taylor problem. Proc. Camb. Phil. Soc. 87, 307.Google Scholar
Sen, M., Vasseur, P. & Robillard, L. 1987 Multiple steady states for unicellular natural convection in an inclined porous layer. Intl J. Heat Mass Transfer 30, 2097.Google Scholar
Vlasuk, M. P. 1972 Convective heat transfer in a porous layer (in Russian). 4th All Union Heat and Mass Transfer Conf., Minsk.
Walch, J. P. 1980 Convection naturelle dans une boîte rectangulaire: contribution a l'étude du cas stable. Thèse, Université Paris VI.
Walch, J. P. & Dulieu, B. 1979 Convection naturelle dans une boîte rectangulaire légèrement inclinée contenant un milieu poreux. Intl J. Heat Mass Transfer 22, 1607.Google Scholar
Walch, J. P. & Dulieu, B. 1982 Convection de Rayleigh—Bénard dans une cavité poreuse faiblement inclinée. J. Phys. Lett. Paris 43, L103.Google Scholar
Weber, J. E. 1975 Thermal convection in a tilted porous layer. Intl J. Heat Mass Transfer 18, 474.Google Scholar
Winters, K. H., Cliffe, K. A. & Jackson, C. P. 1984 A review of extended systems for finding critical points in coupled problems. In Conf. on Numerical Methods for Transient and Coupled Problems (ed. R. W. Lewise, E. Hinton, P. Bettess & B. A. Schrefler), pp. 949959. Swansea: Pineridge.
Winters, K. H., Cliffe, K. A. & Jackson, C. P. 1987 The prediction of instabilities using bifurcation theory. In Numerical Methods for Transient and Coupled Problems (ed. R. W. Lewis, E. Hinton, P. Bettress and B. A. Schrefler), pp. 179198. John Wiley.