Skip to main content Accessibility help

A novel subcritical transition to turbulence in Taylor–Couette flow with counter-rotating cylinders

  • Christopher J. Crowley (a1), Michael C. Krygier (a1), Daniel Borrero-Echeverry (a2), Roman O. Grigoriev (a1) and Michael F. Schatz (a1)...


The transition to turbulence in Taylor–Couette flow often occurs via a sequence of supercritical bifurcations to progressively more complex, yet stable, flows. We describe a subcritical laminar–turbulent transition in the counter-rotating regime mediated by a transient intermediate state in a system with an axial aspect ratio of $\unicode[STIX]{x1D6E4}=5.26$ and a radius ratio of $\unicode[STIX]{x1D702}=0.905$ . In this regime, flow visualization experiments and numerical simulations indicate the intermediate state corresponds to an aperiodic flow featuring interpenetrating spirals. Furthermore, the reverse transition out of turbulence leads first to the same intermediate state, which is now stable, before returning to an azimuthally symmetric laminar flow. Time-resolved tomographic particle image velocimetry is used to characterize the experimental flows; these measurements compare favourably to direct numerical simulations with axial boundary conditions matching those of the experiments.


Corresponding author

Email address for correspondence:


Hide All
Andereck, C. D., Liu, S. S. & Swinney, H. L. 1986 Flow regimes in a circular Couette system with independently rotating cylinders. J. Fluid Mech. 164, 155183.
Avila, K. & Hof, B. 2013 High-precision Taylor–Couette experiment to study subcritical transitions and the role of boundary conditions and size effects. Rev. Sci. Instrum. 84, 065106.
Avila, K., Moxey, D., de Lozar, A., Avila, M., Barkley, D. & Hof, B. 2011 The onset of turbulence in pipe flow. Science 333, 192196.
Avila, M. 2012 Stability and angular-momentum transport of fluid flows between corotating cylinders. Phys. Rev. Lett. 108, 124501.
Avila, M., Grimes, M., Lopez, J. M. & Marques, F. 2008 Global endwall effects on centrifugally stable flows. Phys. Fluids 20, 104104.
Borrero-Echeverry, D.2014 Subcritical transition to turbulence in Taylor–Couette flow. PhD thesis, Georgia Institute of Technology.
Borrero-Echeverry, D., Crowley, C. J. & Riddick, T. P. 2018 Rheoscopic fluids in a post-Kalliroscope world. Phys. Fluids 30, 087103.
Borrero-Echeverry, D. & Morrison, B. C. A. 2016 Aqueous ammonium thiocyanate solutions as refractive index-matching fluids with low density and viscosity. Exp. Fluids 57, 123.
Borrero-Echeverry, D., Schatz, M. F. & Tagg, R. 2010 Transient turbulence in Taylor–Couette flow. Phys. Rev. E 81, 025301(R).
Bottin, S. & Chaté, H. 1998 Statistical analysis of the transition to turbulence in plane Couette flow. Eur. Phys. J. B 6, 143155.
Burin, M. J. & Czarnocki, C. J. 2012 Subcritical transition and spiral turbulence in circular Couette flow. J. Fluid Mech. 709, 106122.
Coles, D. 1965 Transition in circular Couette flow. J. Fluid Mech. 21, 385425.
Coles, D. 1967 A note on Taylor instability in circular Couette flow. Trans. ASME J. Appl. Mech. 34, 529534.
Couette, M. M. 1890 Études sur le frottement des liquides. Ann. Chim. Phys. 20, 433510.
Coughlin, K. & Marcus, P. S. 1996 Turbulent bursts in Couette–Taylor flow. Phys. Rev. Lett. 77, 2214.
Do, Y. & Lai, Y.-C. 2005 Scaling laws for noise-induced superpersistent chaotic transients. Phys. Rev. E 71, 046208.
Eckhardt, B. & Yao, D. 1995 Local stability analysis along Lagrangian paths. Chaos, Solitons and Fractals 5, 20732088.
Edlund, E. M. & Ji, H. 2014 Nonlinear stability of laboratory quasi-Keplerian flows. Phys. Rev. E 89, 021004(R).
Elsinga, G. E., Scarano, F., Wieneke, B. & van Oudheusden, B. W. 2006 Tomographic particle image velocimetry. Exp. Fluids 41, 933947.
Esser, A. & Grossmann, S. 1996 Analytic expression for Taylor–Couette stability boundary. Phys. Fluids 8, 18141819.
Faisst, H. & Eckhardt, B. 2004 Sensitive dependence on initial conditions in transition to turbulence in pipe flow. J. Fluid Mech. 504, 343352.
Goharzadeh, A. & Mutabazi, I. 2001 Experimental characterization of intermittency regimes in the Couette–Taylor system. Eur. Phys. J. B 19, 157162.
Hamill, C. F.1995 Turbulent bursting in the Couette–Taylor system. Master’s thesis, University of Texas at Austin.
Hof, B., van Doorne, C. W. H., Westerweel, J., Nieuwstadt, F. T. M., Faisst, H., Eckhardt, B., Wedin, H., Kerswell, R. R. & Waleffe, F. 2004 Experimental observation of nonlinear traveling waves in turbulent pipe flow. Science 305, 15941598.
Ji, H., Burin, M., Schartman, E. & Goodman, J. 2006 Hydrodynamic turbulence cannot transport angular momentum effectively in astrophysical disks. Nature 444, 343346.
Kadanoff, L. P. & Tang, C. 1984 Escape from strange repellers. Proc. Natl Acad. Sci. USA 81, 12761279.
Kantz, H. & Grassberger, P. 1985 Repellers, semi-attractors, and long-lived chaotic transients. Physica D 17, 7586.
Lopez, J. M. 2016 Subcritical instability of finite circular Couette flow with stationary inner cylinder. J. Fluid Mech. 793, 589611.
Lopez, J. M. & Marques, F. 2003 Small aspect ratio Taylor–Couette flow: Onset of a very-low-frequency three-torus state. Phys. Rev. E 68, 036302.
Mallock, A. 1896 Experiments on fluid viscosity. Phil. Trans. R. Soc. Lond. A 1897, 4156.
Maretzke, S., Hof, B. & Avila, M. 2014 Transient growth in linearly stable Taylor–Couette flows. J. Fluid Mech. 742, 254290.
Matisse, P. & Gorman, M. 1984 Neutrally buoyant anisotropic particles for flow visualization. Phys. Fluids 27, 759.
Mercader, I., Batiste, O. & Alonso, A. 2010 An efficient spectral code for incompressible flows in cylindrical geometries. Comput. Fluids 39, 215224.
Meseguer, A., Mellibovsky, F., Avila, M. & Marques, F. 2009a Families of subcritical spirals in highly counter-rotating Taylor–Couette flow. Phys. Rev. E 79, 036309.
Meseguer, A., Mellibovsky, F., Avila, M. & Marques, F. 2009b Instability mechanisms and transition scenarios of spiral turbulence in Taylor–Couette flow. Phys. Rev. E 80, 046315.
Moore, D. & McCabe, P. G. 1998 Introduction to the Practice of Statistics, 3rd edn. W. H. Freeman.
Morkovin, M. V. 1985 Bypass transition to turbulence and research desiderata. In Transition in Turbines (ed. Graham, R.), NASA Conference Publications, vol. 2386, pp. 161204. NASA Scientific and Technical Information Office.
Nishioka, M., Iida, S. & Ichikawa, Y. 1975 An experimental investigation of the stability of plane Poiseuille flow. J. Fluid Mech. 72, 731751.
Paoletti, M. S. & Lathrop, D. P. 2011 Angular momentum transport in turbulent flow between independently rotating cylinders. Phys. Rev. Lett. 106, 024501.
Peixinho, J. & Mullin, T. 2006 Decay of turbulence in pipe flow. Phys. Rev. Lett. 96, 094501.
Pfister, G., Schmidt, H., Cliffe, K. A. & Mullin, T. 1988 Bifurcation phenomena in Taylor–Couette flow in a very short annulus. J. Fluid Mech. 191, 118.
Prigent, A. & Dauchot, O. 2005 Transition to versus from turbulence in subcritical Couette flows. In IUTAM Symposium on Laminar-Turbulent Transition and Finite Amplitude Solutions (ed. Mullin, T. & Kerswell, R.), pp. 195219. Springer.
Reshotko, E. 1976 Boundary-layer stability and transition. Annu. Rev. Fluid Mech. 8, 311349.
Richard, D. & Zahn, J. P. 1999 Turbulence in differentially rotating flows: What can be learned from the Couette–Taylor experiment. Astronom. Astrophys. 347, 734738.
Schneider, T. M., Gibson, J. F., Lagha, M., De Lillo, F. & Eckhardt, B. 2008 Laminar-turbulent boundary in plane Couette flow. Phys. Rev. E 78 (3), 037301.
Schultz-Grunow, F. 1959 Zur Stabilität der Couette–Strömung. Z. Angew. Math. Mech. 39, 101110.
Sommeria, J., Meyers, S. D. & Swinney, H. L. 1991 Experiments on vortices and Rossby waves in eastward and westward jets. In Nonlinear Topics in Ocean Physics (ed. Osborne, A. R.), Enrico Fermi International School of Physics, vol. 109, pp. 227269. North-Holland.
Suri, B., Tithof, J., Grigoriev, R. O. & Schatz, M. F. 2017 Forecasting fluid flows using the geometry of turbulence. Phys. Rev. Lett. 118, 114501.
Tagg, R. 1994 The Couette–Taylor problem. Nonlinear Sci. Today 4, 125.
Tavener, S. J., Mullin, T. & Cliffe, K. A. 1991 Novel bifurcation phenomena in rotating annulus. J. Fluid Mech. 229, 483497.
Taylor, G. I. 1936a Fluid friction between rotating cylinders. I. Torque measurements. Proc. R. Soc. Lond. A 157, 546564.
Taylor, G. I. 1936b Fluid friction between rotating cylinders. II. Distribution of velocity between concentric cylinders when outer one is rotating and inner one is at rest. Proc. R. Soc. Lond. A 157, 565578.
Van Atta, C. 1966 Exploratory measurements in spiral turbulence. J. Fluid Mech. 25, 495512.
Wendt, F. 1933 Turbulente Strömungen zwischen zwei rotierenden konaxialen Zylindern. Ing.-Arch. 4, 577595.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

A novel subcritical transition to turbulence in Taylor–Couette flow with counter-rotating cylinders

  • Christopher J. Crowley (a1), Michael C. Krygier (a1), Daniel Borrero-Echeverry (a2), Roman O. Grigoriev (a1) and Michael F. Schatz (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.