Skip to main content Accessibility help

Non-periodic phase-space trajectories of roughness-driven secondary flows in high- $Re_{\unicode[STIX]{x1D70F}}$ boundary layers and channels

  • W. Anderson (a1)


Turbulent flows respond to bounding walls with a predominant spanwise heterogeneity – that is, a heterogeneity parallel to the prevailing transport direction – with formation of Reynolds-averaged turbulent secondary flows. Prior experimental and numerical work has determined that these secondary rolls occur in a variety of arrangements, contingent only upon the existence of a spanwise heterogeneity (i.e. from complex, multiscale roughness with a predominant spanwise heterogeneity, to canonical step changes, to different roughness elements). These secondary rolls are known to be a manifestation of Prandtl’s secondary flow of the second kind: driven and sustained by the existence of spatial heterogeneities in the Reynolds (turbulent) stresses, all of which vanish in the absence of spanwise heterogeneity. Herein, we show results from a suite of large-eddy simulations and complementary experimental measurements of flow over spanwise-heterogeneous surfaces. Although the resultant secondary cell location is clearly correlated with the surface characteristics, which ultimately dictates the Reynolds-averaged flow patterns, we show the potential for instantaneous sign reversals in the rotational sense of the secondary cells. This is accomplished with probability density functions and conditional sampling. In order to address this further, a base flow representing the streamwise rolls is introduced. The base flow intensity – based on a leading-order Galerkin projection – is allowed to vary in time through the introduction of time-dependent parameters. Upon substitution of the base flow into the streamwise momentum and streamwise vorticity transport equations, and via use of a vortex forcing model, we are able to assess the phase-space evolution (orbit) of the resulting system of ordinary differential equations. The system resembles the Lorenz system, but the forcing conditions differ intrinsically. Nevertheless, the system reveals that chaotic, non-periodic trajectories are possible for sufficient inertial conditions. Poincaré projection is used to assess the conditions needed for chaos, and to estimate the fractal dimension of the attractor. Its simplicity notwithstanding, the propensity for chaotic, non-periodic trajectories in the base flow model suggests similar dynamics is responsible for the large-scale reversals observed in the numerical and experimental datasets.


Corresponding author

Email address for correspondence:


Hide All
Adrian, R. J. 1988 Linking correlations and structure: stochastic estimation and conditional averaging. In Zoran P. Zaric Memorial International Seminar on Near-Wall Turbulence. Hemisphere.
Adrian, R. J. 2007 Hairpin vortex organization in wall turbulence. Phys. Fluids 19, 041301.
Adrian, R. J., Meinhart, C. D. & Tomkins, C. D. 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.
Anderson, W. 2012 An immersed boundary method wall model for high-Reynolds number channel flow over complex topography. Intl J. Numer. Meth. Fluids 71, 15881608.
Anderson, W., Barros, J. M., Christensen, K. T. & Awasthi, A. 2015 Numerical and experimental study of mechanisms responsible for turbulent secondary flows in boundary layer flows over spanwise heterogeneous roughness. J. Fluid Mech. 768, 316347.
Anderson, W. & Meneveau, C. 2010 A large-eddy simulation model for boundary-layer flow over surfaces with horizontally resolved but vertically unresolved roughness elements. Boundary-Layer Meteorol. 137, 397415.
Anderson, W., Yang, J., Shrestha, K. & Awasthi, A. 2018 Turbulent secondary flows in wall turbulence: vortex forcing, scaling arguments, and similarity solution. Env. Fluid Mech. 18, 13511378.
Antonia, R. A. 1981 Conditional sampling in turbulence measurement. Annu. Rev. Fluid Mech. 13, 131156.
Antonia, R. A. & Luxton, R. E. 1971 The response of a turbulent boundary layer to a step change in surface roughness. Part I. Smooth to rough. J. Fluid Mech. 48, 721761.
Awasthi, A. & Anderson, W. 2018 Numerical study of turbulent channel flow perturbed by spanwise topographic heterogeneity: amplitude and frequency modulation within low-and high-momentum pathways. Phys. Rev. Fluids 3, 044602.
Baars, W. J., Talluru, M. K., Hutchins, N. & Marusic, I. 2015 Wavelet analysis of wall turbulence to study large-scale modulation of small scales. Exp. Fluids 56, 188–1–15.
Balakumar, B. J. & Adrian, R. J. 2007 Large- and very-large-scale motions in channel and boundary-layer flows. Phil. Trans. R. Soc. Lond. A 365, 665681.
Barros, J. M. & Christensen, K. T. 2014 Observations of turbulent secondary flows in a rough-wall boundary layer. J. Fluid Mech. 748, R1.
Belcher, S. E., Harman, I. N. & Finnigan, J. J. 2012 The wind in the willows: flows in forest canopies in complex terrain. Annu. Rev. Fluid Mech. 44, 479504.
Bons, J. P., Taylor, R. P., McClain, S. T. & Rivir, R. B. 2001 The many faces of turbine surface roughness. J. Turbomach. 123, 739748.
Bou-Zeid, E., Meneveau, C. & Parlange, M. B. 2004 Large-eddy simulation of neutral atmospheric boundary layer flow over heterogeneous surfaces: blending height and effective surface roughness. Water Resour. Res. 40, W02505.
Bou-Zeid, E., Meneveau, C. & Parlange, M. 2005 A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows. Phys. Fluids 17 (2), 025105.
Bouchet, F. & Barré, J. 2005 Classification of phase transitions and ensemble inequivalence, in systems with long range interactions. J. Stat. Phys. 118, 10731105.
Bouchet, F. & Simonnet, E. 2009 Random changes of flow topology in two-dimensional and geophysical turbulence. Phys. Rev. Lett. 102, 094504.
Bouchet, F. & Venaille, A. 2012 Statistical mechanics of two-dimensional and geophysical flows. Phys. Rep. 515, 227295.
Bradshaw, P. 1987 Turbulent secondary flows. Annu. Rev. Fluid Mech. 19, 5374.
Brundrett, E. & Baines, W. D. 1964 The production and diffusion of vorticity in duct flow. J. Fluid Mech. 19, 375394.
Brunton, S. L., Proctor, J. L. & Kutz, J. N. 2016 Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl Acad. Sci. USA 113, 39323937.
Castro, I. P. 2007 Rough-wall boundary layers: mean flow universality. J. Fluid Mech. 585, 469485.
Chester, S., Meneveau, C. & Parlange, M. B. 2007 Modelling of turbulent flow over fractal trees with renormalized numerical simulation. J. Comput. Phys. 225, 427448.
Chung, D., Monty, J. P. & Hutchins, N. 2018 Similarity and structure of wall turbulence with lateral wall shear stress variations. J. Fluid Mech. 847, 591613.
Craik, A. D. D. 1985 Wave Interactions and Fluid Flows. Cambridge University Press.
Dennis, D. J. C. & Nickels, T. B. 2011a Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 1. Vortex packets. J. Fluid Mech. 673, 180217.
Dennis, D. J. C. & Nickels, T. B. 2011b Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 2. Long structures. J. Fluid Mech. 673, 218244.
Farmer, J. D., Ott, E. & Yorke, J. A. 1983 The dimension of chaotic attractors. Physica D 7, 153180.
Finnigan, J. J., Shaw, R. H. & Patton, E. G. 2009 Turbulence structure above a vegetation canopy. J. Fluid Mech. 637, 387424.
Fishpool, G. M., Lardeau, S. & Leschziner, M. A. 2009 Persistent non-homogeneous features in periodic channel-flow simulations. Flow Turbul. Combust. 83, 323342.
Flack, K. A. & Schultz, M. P. 2010 Review of hydraulic roughness scales in the fully rough regime. J. Fluids Engng 132 (4), 041203.
Flack, K. A., Schultz, M. P. & Connelly, J. S. 2007 Examination of a critical roughness height for outer layer similarity. Phys. Fluids 19 (9), 095104.
Ganapathisubramani, B., Longmire, E. K. & Marusic, I. 2003 Characteristics of vortex packets in turbulent boundary layers. J. Fluid Mech. 478, 3546.
Garratt, J. R. 1990 The internal boundary layer – a review. Boundary-Layer Meteorol. 40, 171203.
Gayme, D. F., McKeon, B. J., Papachristodoulou, A., Bamieh, B. & Doyle, J. C. 2010 A streamwise constant model of turbulence in plane Couette flow. J. Fluid Mech. 665, 99119.
Gessner, F. B. 1973 The origin of secondary flow in turbulent flow along a corner. J. Fluid Mech. 58, 125.
Goldstein, D. B. & Tuan, T.-C. 1998 Secondary flow induced by riblets. J. Fluid Mech. 363, 115151.
Graham, J. & Meneveau, C. 2012 Modeling turbulent flow over fractal trees using renormalized numerical simulation: alternate formulations and numerical experiments. Phys. Fluids 24, 125105.
Grass, A. J. 1971 Structural features of turbulent flow over smooth and rough boundaries. J. Fluid Mech. 50, 233255.
Grassberger, P. & Procaceia, I. 1983 Characterization of strange attractors. Phys. Rev. Lett. 50, 346349.
Hinze, J. O. 1967 Secondary currents in wall turbulence. Phys. Fluids (Suppl.) 10, S122S125.
Holmes, P., Lumley, J. L. & Berkooz, G. 1996 Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge Monographs on Mechanics. Cambridge University Press.
Hong, J., Katz, J., Meneveau, C. & Schultz, M. 2012 Coherent structures and associated subgrid-scale energy transfer in a rough-wall channel flow. J. Fluid Mech. 712, 92128.
Hutchins, N. & Marusic, I. 2007a Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.
Hutchins, N. & Marusic, I. 2007b Large-scale influences in near-wall turbulence. Phil. Trans. R. Soc. Lond. A 365, 647664.
Hutchins, N., Monty, J. P., Ganapathisubramani, B., Ng, H. C. H. & Marusic, I. 2011 Three-dimensional conditional structure of a high-Reynolds-number turbulent boundary layer. J. Fluid Mech. 673, 255285.
Jacob, C. & Anderson, W. 2016 Conditionally averaged large-scale motions in the neutral atmospheric boundary layer: insights for aeolian processes. Boundary-Layer Meteorol. 162, 2141.
Jelly, T. O., Jung, S. Y. & Zaki, T. A. 2014 Turbulence and skin friction modification in channel flow with streamwise-aligned superhydrophobic surface texture. Phys. Fluids 26, 095102.
Jimenez, J. 2004 Turbulent flow over rough wall. Annu. Rev. Fluid Mech. 36, 173196.
Kevin, Monty, J. P., Bai, H. L., Pathikonda, G., Nugroho, B., Barros, J. M., Christensen, K. T. & Hutchins, N. 2017 Cross-stream stereoscopic particle image velocimetry of a modified turbulent boundary layer over directional surface pattern. J. Fluid Mech. 813, 412435.
Kevin, Monty, J. & Hutchins, N. 2019 Turbulent structures in a statistically three-dimensional boundary layer. J. Fluid Mech. 859, 543565.
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully-developed channel flow at low Reynolds-number. J. Fluid Mech. 177, 133166.
Kim, K. C. & Adrian, R. J. 1999 Very large-scale motion in the outer layer. Phys. Fluids 11, 417422.
Kovasznay, L. S. G., Kibens, V. & Blackwelder, R. F. 1970 Large-scale motion in the intermittent region of a turbulent boundary layer. J. Fluid Mech. 41 (02), 283325.
Krogstad, P. Å., Antonia, R. A. & Browne, L. W. B. 1992 Comparison between rough- and smooth-wall turbulent boundary layers. J. Fluid Mech. 245, 599617.
Laufer, J.1954 The structure of turbulence in fully developed pipe flow. NACA Tech. Rep. 1174.
Laurie, J. & Bouchet, F. 2015 Computation of rare transitions in the barotropic quasi-geostrophic equations. New J. Phys. 17, 015009.
Lee, J., Jelly, T. O. & Zaki, T. A. 2015 Effect of Reynolds number on turbulent drag reduction by superhydrophobic surface textures. Flow Turbul. Combust. 95, 124.
Leibovich, S. 1977 Convective instability of stably stratified water in the ocean. J. Fluid Mech. 82, 561585.
Leibovich, S. 1980 On wave-current interaction theories of langmuir circulations. J. Fluid Mech. 99, 715724.
Leibovich, S. 1983 The form and dynamics of langmuir circulation. Annu. Rev. Fluid Mech. 15, 391427.
Lorenz, E. N. 1963 Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130141.
Lundquist, K. A., Chow, F. K. & Lundquist, J. K. 2010 An immersed boundary method for the weather research and forecasting model. Mon. Weath. Rev. 138, 796817.
Mansfield, J. R., Knio, O. M. & Meneveau, C. 1998 A dynamic les scheme for the vorticity transport equation: formulation and a priori tests. J. Comput. Phys. 145, 693730.
Mansfield, J. R., Knio, O. M. & Meneveau, C. 1999 Dynamic les of colliding vortex rings using a 3d vortex method. J. Comput. Phys. 152, 305345.
Marusic, I., Mathis, R. & Hutchins, N. 2010 Predictive model for wall-bounded turbulent flow. Science 329, 193196.
Mathis, R., Hutchins, N. & Marusic, I. 2009 Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J. Fluid Mech. 628, 311337.
Mathis, R., Hutchins, N. & Marusic, I. 2011 A predictive inner–outer model for streamwise turbulence statistics in wall-bounded flows. J. Fluid Mech. 681, 537566.
Mathis, R., Marusic, I., Chernyshenko, S. I. & Hutchins, N. 2013 Estimating wall-shear-stress fluctuations given an outer region input. J. Fluid Mech. 715, 163180.
McWilliams, J. C., Sullivan, P. P. & Moeng, C.-H. 1997 Langmuir turbulence in the ocean. J. Fluid Mech. 334, 130.
Medjnoun, T., Vanderwel, C. & Ganapathisubramani, B. 2018 Characteristics of turbulent boundary layers over smooth surfaces with spanwise heterogeneities. J. Fluid Mech. 838, 516543.
Mejia-Alvarez, R., Barros, J. M. & Christensen, K. T. 2013 Structural attributes of turbulent flow over a complex topography. In Coherent Flow Structures at the Earth’s Surface (ed. Venditti, J. G., Best, J. L., Church, M. & Hardy, R. J.), chap. 3, pp. 2542. Wiley-Blackwell.
Mejia-Alvarez, R. & Christensen, K. T. 2010 Low-order representations of irregular surface roughness and their impact on a turbulent boundary layer. Phys. Fluids 22, 015106.
Mejia-Alvarez, R. & Christensen, K. T. 2013 Wall-parallel stereo PIV measurements in the roughness sublayer of turbulent flow overlying highly-irregular roughness. Phys. Fluids 25, 115109.
Meyers, J., Ganapathisubramani, B. & Cal, R. B. 2019 On the decay of dispersive motions in the outer region of rough-wall boundary layers. J. Fluid Mech. 862, R5.
Mittal, R. & Iaccarino, G. 2005 Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239261.
Nezu, I. & Nakagawa, H. 1993 Turbulence in Open-Channel Flows. Balkema Publishers.
Nugroho, B., Hutchins, N. & Monty, J. P. 2013 Large-scale spanwise periodicity in a turbulent boundary layer induced by highly ordered and direction surface roughness. Intl J. Heat Fluid Flow 41, 90102.
Orszag, S. A. 1970 Transform method for calculation of vector coupled sums: application to the spectral form of the vorticity equation. J. Atmos. Sci. 27, 890895.
Ott, E. 2002 Chaos in Dynamical Systems. Cambridge University Press.
Pathikonda, G. & Christensen, K. T. 2017 Inner–outer interactions in a turbulent boundary layer overlying complex roughness. Phys. Rev. Fluids 2, 044603.
Peitgen, H.-O., Jürgens, H. & Saupe, D. 1992 Chaos and Fractals. Springer.
Perkins, H. J. 1970 The formation of streamwise vorticity in turbulent flow. J. Fluid Mech. 44, 721740.
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.
Prandtl, L. 1952 Essentials of Fluid Dynamics. Blackie and Son.
Raupach, M. R., Antonia, R. A. & Rajagopalan, S. 1991 Rough-wall turbulent boundary layers. Appl. Mech. Rev. 44, 125.
Reynolds, R. T., Hayden, P., Castro, I. P. & Robins, A. G. 2007 Spanwise variations in nominally two-dimensional rough-wall boundary layers. Exp. Fluids 42, 311320.
Richter, D. H. & Sullivan, P. P. 2014 Modification of near-wall coherent structures by inertial particles. Phys. Fluids 26, 103304.
Saltzman, B. 1962 Finite amplitude free convection as an initial value problem – I. J. Atmos. Sci. 19, 329341.
Schultz, M. P. 2007 Effects of coating roughness and biofouling on ship resistance and powering. Biofouling 23, 331341.
Schultz, M. P. & Flack, K. A. 2009 Turbulent boundary layers on a systematically varied rough wall. Phys. Fluids 21 (1), 015104.
Sheng, J., Malkiel, E. & Katz, J. 2009 Buffer layer structures associated with extreme wall stress events in a smooth wall turbulent boundary layer. J. Fluid Mech. 633, 1760.
de Silva, C. M., Kevin, Baidya, R., Hutchins, N. & Marusic, I. 2018 Large coherence of spanwise velocity in turbulent boundary layers. J. Fluid Mech. 847, 161185.
Smagorinsky, J. S. 1963 General circulation experiments with the primitive equations. Mon. Weath. Rev. 91, 99164.
Stokes, G. G. 1847 On the theory of oscillatory waves. Trans. Camb. Phil. Soc. 8, 441455.
Townsend, A. A. 1976 The Structure of Turbulent Shear Flow. Cambridge University Press.
Vanderwel, C. & Ganapathisubramani, B. 2015 Effects of spanwise spacing on large-scale secondary flows in rough-wall turbulent boundary layers. J. Fluid Mech. 774, R2.
Vanderwel, C., Stroh, A., Kriegseis, J., Frohnapfel, B. & Ganapathisubramani, B. 2019 The instantaneous structure of secondary flows in turbulent boundary layers. J. Fluid Mech. 862, 845870.
Vermaas, D. A., Uijttewall, W. S. J. & Hoitink, A. J. F. 2011 Lateral transfer of streamwise momentum caused by a roughness transition across a shallow channel. Water Resour. Res. 47, W02530.
Volino, R. J., Schultz, M. P. & Flack, K. A. 2007 Turbulence structure in rough- and smooth-wall boundary layers. J. Fluid Mech. 592, 263293.
Waleffe, F. 1998 Three-dimensional coherent states in plane shear flows. Phys. Rev. Lett. 81, 41404143.
Waleffe, F. 2001 Exact coherent structures in channel flow. J. Fluid Mech. 435, 93102.
Waleffe, F. 2003 Homotopy of exact coherent structures in plane shear flows. Phys. Fluids 15, 15171534.
Wang, Z.-Q. & Cheng, N.-S. 2005 Secondary flows over artificial bed strips. Adv. Water Resour. 28, 441450.
Willingham, D., Anderson, W., Christensen, K. T. & Barros, J. 2013 Turbulent boundary layer flow over transverse aerodynamic roughness transitions: induced mixing and flow characterization. Phys. Fluids 26, 025111.
Wood, D. H.1981 The growth of the internal layer following a step change in surface roughness. Report T.N. – FM 57, Dept. of Mech. Eng., University of Newcastle, Australia.
Wu, Y. & Christensen, K. T. 2006 Population trends of spanwise vortices in wall turbulence. J. Fluid Mech. 568, 5576.
Wu, Y. & Christensen, K. T. 2007 Outer-layer similarity in the presence of a practical rough-wall topology. Phys. Fluids 19, 085108.
Wu, Y. & Christensen, K. T. 2010 Spatial structure of a turbulent boundary layer with irregular surface roughness. J. Fluid Mech. 655, 380418.
Yang, D., Chen, B., Chamecki, M. & Meneveau, C. 2015 Oil plumes and dispersion in Langmuir, upper-ocean turbulence: large-eddy simulations and k-profile parameterization. J. Geophys. Res.: Oceans 120, 47294759.
Yang, J. & Anderson, W. 2017 Turbulent channel flow over surfaces with variable spanwise heterogeneity: establishing conditions for outer-layer similarity. Flow Turbul. Combust. 100, 117.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

Non-periodic phase-space trajectories of roughness-driven secondary flows in high- $Re_{\unicode[STIX]{x1D70F}}$ boundary layers and channels

  • W. Anderson (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.