Skip to main content Accessibility help
×
Home

Nonlinear travelling internal waves with piecewise-linear shear profiles

  • K. L. Oliveras (a1) and C. W. Curtis (a2)

Abstract

In this work, we study the nonlinear travelling waves in density stratified fluids with piecewise-linear shear currents. Beginning with the formulation of the water-wave problem due to Ablowitz et al. (J. Fluid Mech., vol. 562, 2006, pp. 313–343), we extend the work of Ashton & Fokas (J. Fluid Mech., vol. 689, 2011, pp. 129–148) and Haut & Ablowitz (J. Fluid Mech., vol. 631, 2009, pp. 375–396) to examine the interface between two fluids of differing densities and varying linear shear. We derive a systems of equations depending only on variables at the interface, and numerically solve for periodic travelling wave solutions using numerical continuation. Here, we consider only branches which bifurcate from solutions where there is no slip in the tangential velocity at the interface for the trivial flow. The spectral stability of these solutions is then determined using a numerical Fourier–Floquet technique. We find that the strength of the linear shear in each fluid impacts the stability of the corresponding travelling wave solutions. Specifically, opposing shears may amplify or suppress instabilities.

Copyright

Corresponding author

Email address for correspondence: oliveras@seattleu.edu

References

Hide All
Ablowitz, M., Fokas, A. & Musslimani, Z. 2006 On a new non-local formulation of water waves. J. Fluid Mech. 562, 313343.
Akers, B. F., Ambrose, D., Pond, K. & Wright, J. 2016 Overturned internal capillary–gravity waves. Eur. J. Mech. (B/Fluids) 57, 143151.
Appel, J. 2004 Oceanic internal wavs and solitons. In Synthetic Aperture Radar Marine User’s Manual, pp. 189206. U.S. Department of Commerce.
Ashton, A. & Fokas, A. 2011 A non-local formulation of rotational water waves. J. Fluid Mech. 689, 129148.
Choi, W. 2009 Nonlinear surface waves interacting with a linear shear current. Maths Comput. Simul. 80 (1), 2936.
Constantin, A. 2011 Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis. SIAM.
Craig, W., Guyenne, P. & Kalisch, K. 2005a Hamiltonian long-wave expansions for free surfaces and interfaces. Commun. Pure Appl. Maths 58, 15871641.
Craig, W., Guyenne, P., Nicholls, D. P. & Sulem, C. 2005b Hamiltonian long–wave expansions for water waves over a rough bottom. Proc. R. Soc. Lond. A 461, 839873.
Curtis, C. & Deconinck, B. 2010 On the convergence of Hill’s method. Maths Comput. 79, 169187.
Curtis, C., Oliveras, K. & Morrison, T. 2016 Shallow waves in density stratified shear currents. Eur. J. Mech. (B/Fluids) (accepted).
Dalrymple, R. 1974 Water waves on a bilinear shear current. In Proc. 14th Conf. on Coastal Engng. (ed. Edge, B.), pp. 626641. American Society of Civil Engineers.
Deconinck, B. & Kutz, J. 2006 Computing spectra of linear operators using the Floquet–Fourier–Hill method. J. Comput. Phys. 219, 296321.
Deconinck, B. & Oliveras, K. 2011 The instability of periodic surface gravity waves. J. Fluid Mech. 675, 141167.
Deconinck, B. & Trichtchenko, O.2016 High-frequency instabilities of small-amplitude solutions of Hamiltonian PDEs. DCDS-B (to appear).
Dias, F. & Kharif, C. 1999 Nonlinear gravity and capillary-gravity waves. Annu. Rev. Fluid Mech. 31, 301346.
Farmer, D. & Armi, L. 1999 The generation and trapping of solitary waves over topography. Science 283, 188191.
Fokas, A. S. 2008 A Unified Approach to Boundary Value Problems, vol. 78. SIAM.
Francius, M. & Kharif, C. 2006 Three-dimensional instabilities of periodic gravity waves in shallow water. J. Fluid Mech. 561, 417437.
Grue, J., Jensen, A., Rusøas, P.-O. & Sveen, J. K. 1999 Properties of large-amplitude internal waves. J. Fluid Mech. 380, 257278.
Haut, T. & Ablowitz, M. 2009 A reformulation and applications of interfacial fluids with a free surface. J. Fluid Mech. 631, 375396.
Helfrich, K. & Melville, W. 2006 Long nonlinear internal waves. Annu. Rev. Fluid Mech. 38, 395425.
Hur, V. & Johnson, M. A. 2015 Modulational instability in the whitham equation with surface tension and vorticity. Nonlinear Anal. Theory Meth. Applics. 129, 104118.
Ko, J. & Strauss, W. 2008 Effect of vorticity on steady water waves. J. Fluid Mech. 608, 197215.
Luke, J. 1967 A variational principle for a fluid with a free surface. J. Fluid Mech. 27, 395397.
McLean, J. W. 1982a Instabilities of finite-amplitude gravity waves on water of finite depth. J. Fluid Mech. 114, 331341.
McLean, J. W. 1982b Instabilities of finite-amplitude water waves. J. Fluid Mech. 114, 315330.
Moler, C. & Stewart, G. 1973 An algorithm for generalized matrix eigenvalue problems. SIAM J. Numer. Anal. 10, 241256.
Oliveras, K., Sprenger, P. & Vasan, V.2016 The instability of traveling waves with vorticity: Part I, infinite depth (in preparation).
Oliveras, K. & Vasan, V. 2013 A new equation describing travelling water waves. J. Fluid Mech. 717, 514522.
Osborne, A. & Burch, T. 1980 Internal solitons in the Andaman Sea. Science 208, 451460.
Pullin, D. & Grimshaw, R. 1983 Interfacial progressive gravity waves in a two-layer shear flow. Phys. Fluids 26, 17311739.
Pullin, D. & Grimshaw, R. 1986 Stability of finite-amplitude interfacial waves. Part 3. The effect of basic current shear for one-dimensional instabilities. J. Fluid Mech. 172, 277306.
Pullin, D. & Grimshaw, R. 1988 Finite-amplitude solitary waves at the interface between two homogeneous fluids. Phys. Fluids 31, 35503559.
da Silva, A. T. & Peregrine, D. 1988 Steep, steady surface waves on wter of finite depth with constant vorticity. J. Fluid Mech. 195, 281302.
Simmen, J. & Saffman, P. 1985 Steady deep-water waves on a linear shear current. Stud. Appl. Maths 75, 3557.
Swan, C., Cummins, I. & James, R. 2001 An experimental study of two-dimensional surface water waves propagating on depth-varying currents. Part 1. Regular waves. J. Fluid Mech. 428, 273304.
Thomas, R., Kharif, C. & Manna, M. 2012 A nonlinear schrödinger equation for water waves on finite depth with constant vorticity. Phys. Fluids 24 (12), 127102.
Vanden-Broeck, J. 1994 Steep solitary waves in water of finite depth with constant vorticity. J. Fluid Mech. 274, 339348.
Vasan, V. & Oliveras, K. 2014 Pressure beneath a traveling wave with constant vorticity. Discrete Continuous Dyn. Syst. 34, 32193239.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Nonlinear travelling internal waves with piecewise-linear shear profiles

  • K. L. Oliveras (a1) and C. W. Curtis (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed