Skip to main content Accessibility help

Nonlinear spatial evolution of helical disturbances to an axial jet

  • S. M. Churilov (a1) and I. G. Shukhman (a1)


We investigate the weakly nonlinear spatial evolution of helical disturbances of an axisymmetrical jet which are the analogue of three-dimensional disturbances, such as a single oblique wave (the wave vector is directed at an angle to the main flow velocity) in plane-parallel flows. It is shown that when a supercriticality is large enough, the perturbation amplitude A grows in the streamwise direction (along z) explosively: A ∼ (z0z)−5/2, though more slowly than in the case of essentially three-dimensional disturbances in the form of a pair of oblique waves (A ∼ (z0z)−3; Goldstein & Choi 1989). The nonlinearity needed for such a growth, is due equally to the cylindricity of shear layer and to the spatial character of the evolution (in the temporal problem the ‘evolution’ contribution is absent). At a smaller supercriticality, the evolution equation has a non-local (integral in z) nonlinearity, unusual for the regime of a viscous critical layer. Scenarios of disturbance development for different levels of supercriticality are studied, with proper account taken of viscous broadening of the flow.



Hide All
Churilov, S. M. & Shukhman, I. G. 1987 The nonlinear development of disturbances in a zonal shear flow. Geophys. Astrophys. Fluid Dyn. 38, 145175.
Churilov, S. M. & Shukhman, I. G. 1988 Nonlinear stability of stratified shear flow in the regime with an unsteady critical layer. J. Fluid Mech. 194, 187216.
Churilov, S. M. & Shukhman, I. G. 1993 Critical layer and nonlinear evolution of disturbances in weakly supercritical shear flows. Preprint ISTP No 4-93, Irkutsk. Also Izv. RAN. Fiz. Atmos. Okeana (in press), and XVIIIth Intl Congr. on Theor. and Appl. Mech. Haifa, Israel, 1992, Abstracts, pp. 3940.
Cohen, J. & Wygnanski, I. 1987a The evolution of instabilities in the axisymmetric jet. Part 1. The linear growth of disturbances near the nozzle. J. Fluid Mech. 176, 191219.
Cohen, J. & Wygnanski, I. 1987b The evolution of instabilities in the axisymmetric jet. Part 2. The flow resulting from the interaction between two waves. J. Fluid Mech. 176, 221235.
Goldstein, M. E. & Choi, S.-W. 1989 Nonlinear evolution of interacting oblique waves on two-dimensional shear layers. J. Fluid Mech. 207, 97120.
Goldstein, M. E. & Hultgren, L. S. 1988 Nonlinear spatial evolution of an externally excited instability wave in a free shear layer. J. Fluid Mech. 197, 295330 (referred to herein as GH).
Goldstein, M. E. & Leib, S. J. 1989 Nonlinear evolution of oblique waves on compressible shear layers. J. Fluid Mech. 207, 7396.
Haberman, R. 1972 Critical layers in parallel flows. Stud. Appl. Maths 51, 139161.
Huerre, P. & Scott, J. F. 1980 Effect of critical layer structure on the nonlinear evolution of waves in free shear layers. Proc. R. Soc. Land. A 371, 509524.
Maslowe, S. A. 1973 Finite-amplitude Kelvin–Helmholtz billows. Boundary-Layer Met. 5, 4352.
Michalke, A. 1965 On spatially growing disturbances in an inviscid shear layer. J. Fluid Mech. 23, 521536.
Reutov, V. P. 1982 An unsteady critical layer and nonlinear stage of instability in a flat Poiseuille flow. Zh. Prikl. Mekh. Tekhn. Fiz. 4, 4354. (in Russian).
Shukhman, I. G. 1989 Nonlinear stability of a weakly supercritical mixing layer in a rotating fluid. J. Fluid Mech. 200, 425450. Also, Preprint SibIZMIR No. 30–87, Irkutsk, 1987 (in Russian).
Shukhman, I. G. 1991 Nonlinear evolution of spiral density waves generated by the instability of shear layer in a rotating compressible fluid. J. Fluid Mech. 233, 587612.
Smith, F. T. & Blennerhassett, P. 1992 Nonlinear interaction of oblique three-dimensional Tollmien-Schlichting waves and longitudinal vortices, in channel flows and boundary layers. Proc. R. Soc. Land. A 436, 585602.
Wu, X. 1993 Nonlinear temporal–spatial modulation of near planar Rayleigh waves in shear flows: formation of streamwise vortices. J. Fluid Mech. 256, 685719.
Wu, X., Lee, S. S. & Cowley, S. J. 1993 On the weakly nonlinear three-dimensional instability of shear layers to pairs of oblique waves: the Stokes layer as a paradigm. J. Fluid Mech. 253, 681721.
MathJax is a JavaScript display engine for mathematics. For more information see

Related content

Powered by UNSILO

Nonlinear spatial evolution of helical disturbances to an axial jet

  • S. M. Churilov (a1) and I. G. Shukhman (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.