Skip to main content Accessibility help

Nonlinear sound propagation in two-dimensional curved ducts: a multimodal approach

  • James P. McTavish (a1) and Edward J. Brambley (a2)


A method for studying weakly nonlinear acoustic propagation in two-dimensional ducts of general shape – including curvature and variable width – is presented. The method is based on a local modal decomposition of the pressure and velocity in the duct. A pair of nonlinear ordinary differential equations for the modal amplitudes of the pressure and velocity modes is derived. To overcome the inherent instability of these equations, a nonlinear admittance relation between the pressure and velocity modes is presented, introducing a novel ‘nonlinear admittance’ term. Appropriate equations for the admittance are derived which are to be solved through the duct, with a radiation condition applied at the duct exit. The pressure and velocity are subsequently found by integrating an equation involving the admittance through the duct. The method is compared, both analytically and numerically, against published results and the importance of nonlinearity is demonstrated in ducts of complex geometry. Comparisons between ducts of differing geometry are also performed to illustrate the effect of geometry on nonlinear sound propagation. A new ‘nonlinear reflectance’ term is introduced, providing a more complete description of acoustic reflection that also takes into account the amplitude of the incident wave.


Corresponding author

Email address for correspondence:


Hide All
Anderson, E., Bai, Z., Bischof, C., Blackford, L. S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A. et al. 1999 LAPACK Users’ guide. SIAM.10.1137/1.9780898719604
Bi, W. 2008 Calculations of modes in circumferentially nonuniform lined ducts. J. Acoust. Soc. Am. 123, 26032612.10.1121/1.2897105
Bi, W. P., Pagneux, V., Lafarge, D. & Aurégan, Y. 2006 Modelling of sound propagation in a non-uniform lined duct using a multi-modal propagation method. J. Sound Vib. 289 (4–5), 10911111.10.1016/j.jsv.2005.03.021
Blackstock, D. T. 1966 Connection between the Fay and Fubini solutions for plane sound waves of finite amplitude. J. Acoust. Soc. Am. 39 (6), 10191026.10.1121/1.1909986
Brambley, E. J. & Peake, N. 2008 Sound transmission in strongly curved slowly varying cylindrical ducts with flow. J. Fluid Mech. 596, 387412.10.1017/S0022112007009603
Cabelli, A. 1980 The acoustic characteristics of duct bends. J. Sound Vib. 68 (3), 369388.10.1016/0022-460X(80)90393-4
Campos, L. M. B. C. 1984 Some general properties of the exact acoustic fields in horns and baffles. J. Sound Vib. 95 (2), 177201.10.1016/0022-460X(84)90541-8
Fay, R. D. 1931 Plane sound waves of finite amplitude. J. Acoust. Soc. Am. 3 (2A), 222241.10.1121/1.1915557
Félix, S. & Pagneux, V. 2001 Sound propagation in rigid bends: a multimodal approach. J. Acoust. Soc. Am. 110 (3), 13291337.10.1121/1.1391249
Félix, S. & Pagneux, V. 2002 Multimodal analysis of acoustic propagation in three-dimensional bends. Wave Motion 36 (2), 157168.10.1016/S0165-2125(02)00009-4
Fernando, R., Druon, Y., Coulouvrat, F. & Marchiano, R. 2011 Nonlinear waves and shocks in a rigid acoustical guide. J. Acoust. Soc. Am. 129 (2), 604615.10.1121/1.3531799
Fubini, E. 1935 Anomalie nella propagazione di ande acustiche de grande ampiezza. Alta Frequenza 4, 530581.
Gilbert, J., Dalmont, J.-P., Potier, R. & Reby, D. 2014 Is nonlinear propagation responsible for the brassiness of elephant trumpet calls? Acta Acust. united with Acust. 100 (4), 734738.10.3813/AAA.918752
Gilbert, J., Menguy, L. & Campbell, M. 2008 A simulation tool for brassiness studies. J. Acoust. Soc. Am. 123 (4), 18541857.10.1121/1.2872342
Hamilton, M. F. & Blackstock, D. T. 1990 On the linearity of the momentum equation for progressive plane waves of finite amplitude. J. Acoust. Soc. Am. 88 (4), 20252026.10.1121/1.400179
Hamilton, M. F. & Blackstock, D. T. 1998 Nonlinear Acoustics. Academic Press.
Hirschberg, A., Gilbert, J., Msallam, R. & Wijnands, A. P. J. 1996 Shock waves in trombones. J. Acoust. Soc. Am. 99 (3), 17541758.10.1121/1.414698
Kuznetsov, V. P. 1971 Equation of nonlinear acoustics. Sov. Phys. Acoust. 16 (4), 467470.
Moler, C. & Van Loan, C. 2003 Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45 (1), 349.10.1137/S00361445024180
Pagneux, V., Amir, N. & Kergomard, J. 1996 A study of wave propagation in varying cross-section waveguides by modal decomposition. Part I. Theory and validation. J. Acoust. Soc. Am. 100 (4), 20342048.10.1121/1.417913
Rendón, P. L., Orduña-Bustamante, F., Narezo, D., Pérez-López, A. & Sorrentini, J. 2010 Nonlinear progressive waves in a slide trombone resonator. J. Acoust. Soc. Am. 127 (2), 10961103.10.1121/1.3277221
Rostafiński, W. 1991 Monograph on Propagation of Sound Waves in Curved Ducts. National Aeronautics and Space Administration.
Thompson, M. W. & Strong, W. J. 2001 Inclusion of wave steepening in a frequency-domain model of trombone sound production. J. Acoust. Soc. Am. 110 (1), 556562.10.1121/1.1371759
Ting, L. & Miksis, M. J. 1983 Wave propagation through a slender curved tube. J. Acoust. Soc. Am. 74 (2), 631639.10.1121/1.389786
Webster, A. G. 1919 Acoustical impedance and the theory of horns and of the phonograph. Proc. Natl Acad. Sci. USA 5 (7), 275282.10.1073/pnas.5.7.275
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed