Skip to main content Accessibility help
×
Home

A nonlinear small-deformation theory for transient droplet electrohydrodynamics

  • Debasish Das (a1) and David Saintillan (a1)

Abstract

The deformation of a viscous liquid droplet suspended in another liquid and subject to an applied electric field is a classic multiphase flow problem best described by the Melcher–Taylor leaky dielectric model. The main assumption of the model is that any net charge in the system is concentrated on the interface between the two liquids as a result of the jump in Ohmic currents from the bulk. Upon application of the field, the drop can either attain a steady prolate or oblate shape with toroidal circulating flows both inside and outside arising from tangential stresses on the interface due to action of the field on the surface charge distribution. Since the pioneering work of Taylor (Proc. R. Soc. Lond. A, vol. 291, 1966, pp. 159–166), there have been numerous computational and theoretical studies to predict the deformations measured in experiments. Most existing theoretical models, however, have either neglected transient charge relaxation or nonlinear charge convection by the interfacial flow. In this work, we develop a novel small-deformation theory accurate to second order in electric capillary number $O(Ca_{E}^{2})$ for the complete Melcher–Taylor model that includes transient charge relaxation, charge convection by the flow, as well as transient shape deformation. The main result of the paper is the derivation of coupled evolution equations for the induced electric multipoles and for the shape functions describing the deformations on the basis of spherical harmonics. Our results, which are consistent with previous models in the appropriate limits, show excellent agreement with fully nonlinear numerical simulations based on an axisymmetric boundary element formulation and with existing experimental data in the small-deformation regime.

Copyright

Corresponding author

Email address for correspondence: dstn@ucsd.edu

Footnotes

Hide All

Present address: Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK.

Footnotes

References

Hide All
Abramowitz, M. & Stegun, I. A. 1972 Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables. Dover.
Ajayi, O. O. 1978 A note on Taylor’s electrohydrodynamic theory. Proc. R. Soc. Lond. A 364, 499507.
Allan, R. S. & Mason, S. G. 1962 Particle behaviour in shear and electric fields. I. Deformation and burst of fluid drops. Proc. R. Soc. Lond. A 267, 4561.
Anderson, J. L. 1985 Droplet interactions in thermocapillary motion. Intl J. Multiphase Flow 11, 813824.
Bandopadhyay, A., Mandal, S., Kishore, N. K. & Chakraborty, S. 2016 Uniform electric-field-induced lateral migration of a sedimenting drop. J. Fluid Mech. 792, 553589.
Basaran, O. A., Gao, H. & Bhat, P. P. 2013 Nonstandard inkjets. Annu. Rev. Fluid Mech. 45, 85113.
Baygents, J. C., Rivette, N. J. & Stone, H. A. 1998 Electrohydrodynamic deformation and interaction of drop pairs. J. Fluid Mech. 368, 359375.
Castellanos, A. 2014 Electrohydrodynamics. Springer.
Collins, R. T., Jones, J. J., Harris, M. T. & Basaran, O. A. 2008 Electrohydrodynamic tip streaming and emission of charged drops from liquid cones. Nat. Phys. 4, 149154.
Collins, R. T., Sambath, K., Harris, M. T. & Basaran, O. A. 2013 Universal scaling laws for the disintegration of electrified drops. Proc. Natl Acad. Sci. USA 110, 49054910.
Das, D. & Saintillan, D. 2013 Electrohydrodynamic interaction of spherical particles under Quincke rotation. Phys. Rev. E 87, 043014.
Esmaeeli, A. & Sharifi, P. 2011 Transient electrohydrodynamics of a liquid drop. Phys. Rev. E 84, 036308.
Feng, J. Q. 1999 Electrohydrodynamic behaviour of a drop subjected to a steady uniform electric field at finite electric Reynolds number. Proc. R. Soc. Lond. A 455, 22452269.
Ha, J.-W. & Yang, S.-M. 2000 Deformation and breakup of Newtonian and non-Newtonian conducting drops in an electric field. J. Fluid Mech. 405, 131156.
Harris, F. E. & O’Konski, C. T. 1957 Dielectric properties of aqueous ionic solutions at microwave frequencies. J. Phys. Chem. 61, 310319.
Haywood, R. J., Renksizbulut, M. & Raithby, G. D. 1991 Transient deformation of freely-suspended liquid droplets in electrostatic fields. AIChE J. 37, 13051317.
He, H., Salipante, P. F. & Vlahovska, P. M. 2013 Electrorotation of a viscous droplet in a uniform direct current electric field. Phys. Fluids 25, 032106.
Huang, Z.-M., Zhang, Y.-Z., Kotaki, M. & Ramakrishna, S. 2003 A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63, 22232253.
Jaswon, M. A. 1963 Integral equation methods in potential theory. I. Proc. R. Soc. Lond. A 275, 2332.
Joseph, D. D. 1967 Parameter and domain dependence of eigenvalues of elliptic partial differential equations. Arch. Rat. Mech. Anal. 24, 325351.
Kim, S. & Karrila, S. J. 2013 Microhydrodynamics: Principles and Selected Applications. Dover.
Lac, E. & Homsy, G. M. 2007 Axisymmetric deformation and stability of a viscous drop in a steady electric field. J. Fluid Mech. 590, 239264.
Lanauze, J. A., Walker, L. M. & Khair, A. S. 2013 The influence of inertia and charge relaxation on electrohydrodynamic drop deformation. Phys. Fluids 25, 112101.
Lanauze, J. A., Walker, L. M. & Khair, A. S. 2015 Nonlinear electrohydrodynamics of slightly deformed oblate drops. J. Fluid Mech. 774, 245266.
Laser, D. J. & Santiago, J. G. 2004 A review of micropumps. J. Micromech. Microengng 14, R35.
Leveque, R. J. 2002 Finite Volume Methods for Hyperbolic Problems. Cambridge University Press.
López-Herrera, J. M., Popinet, S. & Herrada, M. A. 2011 A charge-conservative approach for simulating electrohydrodynamic two-phase flows using volume-of-fluid. J. Comput. Phys. 230, 19391955.
Melcher, J. R. & Taylor, G. I. 1969 Electrohydrodynamics: a review of the role of interfacial shear stresses. Annu. Rev. Fluid Mech. 1, 111146.
Moriya, S., Adachi, K. & Kotaka, T. 1986 Deformation of droplets suspended in viscous media in an electric field. I. Rate of deformation. Langmuir 2, 155160.
O’Konski, C. T. & Thacher, H. C. 1953 The distortion of aerosol droplets by an electric field. J. Phys. Chem. 57, 955958.
Park, J.-U., Hardy, M., Kang, S. J., Barton, K., Adair, K., Mukhopadhyay, D. K., Lee, C. Y., Strano, M. S., Alleyne, A. G., Georgiadis, J. G., Ferreira, P. M. & Rogers, J. A. 2007 High-resolution electrohydrodynamic jet printing. Nat. Mater. 6, 782789.
Pelekasis, N. A., Tsamopoulos, J. A. & Manolis, G. D. 1990 Equilibrium shapes and stability of charged and conducting drops. Phys. Fluids 2, 13281340.
Pozrikidis, C. 1992 Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press.
Pozrikidis, C. 2002 A Practical Guide to Boundary Element Methods with the Software Library BEMLIB. CRC Press.
Pozrikidis, C. 2011 Introduction to Theoretical and Computational Fluid Dynamics. Oxford University Press.
Rallison, J. 1984 The deformation of small viscous drops and bubbles in shear flows. Annu. Rev. Fluid Mech. 16, 4566.
Salipante, P. F. & Vlahovska, P. M. 2010 Electrohydrodynamics of drops in strong uniform dc electric fields. Phys. Fluids 22, 112110.
Salipante, P. F. & Vlahovska, P. M. 2013 Electrohydrodynamic rotations of a viscous droplet. Phys. Rev. E 88, 043003.
Saville, D. A. 1997 Electrohydrodynamics: the Taylor–Melcher leaky dielectric model. Annu. Rev. Fluid Mech. 29, 2764.
Scott, T. C. 1989 Use of electric fields in solvent extraction: a review and prospectus. Sep. Purif. Meth. 18, 65109.
Sellier, A. 2006 On the computation of the derivatives of potentials on a boundary by using boundary-integral equations. Comput. Meth. Appl. Mech. Engng 196, 489501.
Sherwood, J. D. 1988 Breakup of fluid droplets in electric and magnetic fields. J. Fluid Mech. 188, 133146.
Shkadov, V. Y. & Shutov, A. A. 2002 Drop and bubble deformation in an electric field. Fluid Dyn. 37, 713724.
Shutov, A. A. 2002 The shape of a drop in a constant electric field. Tech. Phys. 47, 15011508.
Supeene, G., Koch, C. R. & Bhattacharjee, S. 2008 Deformation of a droplet in an electric field: nonlinear transient response in perfect and leaky dielectric media. J. Colloid Interface Sci. 318, 463476.
Symm, G. T. 1963 Integral equation methods in potential theory. II. Proc. R. Soc. Lond. A 275, 3346.
Taylor, G. I. 1964 Disintegration of water drops in an electric field. Proc. R. Soc. Lond. A 280, 383397.
Taylor, G. I. 1966 Studies in electrohydrodynamics. I. The circulation produced in a drop by electrical field. Proc. R. Soc. Lond. A 291, 159166.
Taylor, G. I. 1969 Electrically driven jets. Proc. R. Soc. Lond. A 313, 453475.
Tsamopoulos, J. A., Akylas, T. R. & Brown, R. A. 1985 Dynamics of charged drop break-up. Proc. R. Soc. Lond. A 401, 6788.
Tsukada, T., Katayama, T., Ito, Y. & Hozawa, M. 1993 Theoretical and experimental studies of circulations inside and outside a deformed drop under a uniform electric field. J. Chem. Engng Japan 26, 698703.
Wilson, C. T. R. & Taylor, G. I. 1925 The bursting of soap-bubbles in a uniform electric field. Math. Proc. Cambridge Philos. Soc. 22, 728730.
Yariv, E. & Almog, Y. 2016 The effect of surface-charge convection on the settling velocity of spherical drops in a uniform electric field. J. Fluid Mech. 797, 536548.
Yariv, E. & Frankel, I. 2016 Electrohydrodynamic rotation of drops at large electric Reynolds numbers. J. Fluid Mech. 788, R2.
Zhang, J., Zahn, J. D. & Lin, H. 2013 Transient solution for droplet deformation under electric fields. Phys. Rev. E 87, 043008.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Type Description Title
VIDEO
Movies

Das and Saintillan supplementary movie
Movie showing the drop deformation and streamlines in the case of system 1b (corresponding to figure 4).

 Video (9.0 MB)
9.0 MB
VIDEO
Movies

Das and Saintillan supplementary movie
Movie showing the drop deformation and velocity field in the case of system 1b (corresponding to figure 4).

 Video (4.7 MB)
4.7 MB

A nonlinear small-deformation theory for transient droplet electrohydrodynamics

  • Debasish Das (a1) and David Saintillan (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed