Skip to main content Accessibility help

Nonlinear self-excited thermoacoustic oscillations of a ducted premixed flame: bifurcations and routes to chaos

  • Karthik Kashinath (a1), Iain C. Waugh (a1) and Matthew P. Juniper (a1)


Thermoacoustic systems can oscillate self-excitedly, and often non-periodically, owing to coupling between unsteady heat release and acoustic waves. We study a slot-stabilized two-dimensional premixed flame in a duct via numerical simulations of a $G$ -equation flame coupled with duct acoustics. We examine the bifurcations and routes to chaos for three control parameters: (i) the flame position in the duct, (ii) the length of the duct and (iii) the mean flow velocity. We observe period-1, period-2, quasi-periodic and chaotic oscillations. For certain parameter ranges, more than one stable state exists, so mode switching is possible. At intermediate times, the system is attracted to and repelled from unstable states, which are also identified. Two routes to chaos are established for this system: the period-doubling route and the Ruelle–Takens–Newhouse route. These are corroborated by analyses of the power spectra of the acoustic velocity. Instantaneous flame images reveal that the wrinkles on the flame surface and pinch-off of flame pockets are regular for periodic oscillations, while they are irregular and have multiple time and length scales for quasi-periodic and aperiodic oscillations. This study complements recent experiments by providing a reduced-order model of a system with approximately 5000 degrees of freedom that captures much of the elaborate nonlinear behaviour of ducted premixed flames observed in the laboratory.


Corresponding author

Present address: Climate Science Department, Earth Sciences Division, Lawrence Berkeley National Lab, 1 Cyclotron Road, MS74R316C, Berkeley, CA 94720, USA. Email address for correspondence:


Hide All
Argyris, J., Faust, G. & Haase, M. 1993 Routes to chaos and turbulence: a computational introduction. Phil. Trans. R. Soc. Lond. A 344 (1671), 207234.
Ashwin, P. & Timme, M. 2005 Unstable attractors: existence and robustness in networks of oscillators with delayed pulse coupling. Nonlinearity 18 (5), 20352060.
Baillot, F., Durox, D. & Prud’homme, R. 1992 Experimental and theoretical study of a premixed flame. Combust. Flame 88 (2), 149168.
Balachandran, R., Dowling, A. P. & Mastorakos, E. 2008 Non-linear response of turbulent premixed flames to imposed inlet velocity oscillations of two frequencies. Flow Turbul. Combust. 80 (4), 455487.
Balasubramanian, K. & Sujith, R. I. 2008 Non-normality and nonlinearity in combustion–acoustic interaction in diffusion flames. J. Fluid Mech. 594, 2957.
Bergé, P., Pomeau, Y., Vidal, C. & Tuckerman, L. 1986 Order Within Chaos: Towards a Deterministic Approach to Turbulence. Wiley.
Birbaud, A., Durox, D. & Candel, S. 2006 Upstream flow dynamics of a laminar premixed conical flame submitted to acoustic modulations. Combust. Flame 146 (3), 541552.
Boudy, F., Durox, D., Schuller, T. & Candel, S. 2013 Analysis of limit cycles sustained by two modes in the flame describing function framework. C. R. Méc. 341 (1), 181190.
Boyer, L. & Quinard, J. 1990 On the dynamics of anchored flames. Combust. Flame 82 (1), 5165.
Culick, F. E. C. 1971 Non-linear growth and limiting amplitude of acoustic oscillations in combustion chambers. Combust. Sci. Technol. 3 (1), 116.
Dowling, A. P. 1997 Nonlinear self-excited oscillations of a ducted flame. J. Fluid Mech. 346 (1), 271290.
Dowling, A. P. 1999 A kinematic model of a ducted flame. J. Fluid Mech. 394 (1), 5172.
Ducruix, S., Durox, D. & Candel, S. 2000 Theoretical and experimental determination of the flame transfer function of a laminar premixed flame. Proc. Combust. Inst. 28 (1), 765773.
Durox, D, Schuller, T & Candel, S 2005 Combustion dynamics of inverted conical flames. Proc. Combust. Inst. 30 (2), 17171724.
Eckhardt, B., Schneider, T. M., Hof, B. & Westerweel, J. 2007 Turbulence transition in pipe flow. Annu. Rev. Fluid Mech. 39, 447468.
Eckmann, J. P. 1981 Roads to turbulence in dissipative dynamical systems. Rev. Mod. Phys. 53 (4), 643654.
Fenstermacher, P. R., Swinney, H. L. & Gollub, J. P. 1979 Dynamical instabilities and the transition to chaotic Taylor vortex flow. J. Fluid Mech. 94 (1), 103128.
Gibson, J. F., Halcrow, J. & Cvitanović, P. 2009 Equilibrium and travelling-wave solutions of plane Couette flow. J. Fluid Mech. 638 (1), 243266.
Gollub, J. P. & Benson, S. V. 1980 Many routes to turbulent convection. J. Fluid Mech. 100 (3), 449470.
Gollub, J. P & Swinney, H. L. 1975 Onset of turbulence in a rotating fluid. Phys. Rev. Lett. 35 (14), 927930.
Gotoda, H., Amano, M., Miyano, T., Ikawa, T., Maki, K. & Tachibana, S. 2012 Characterization of complexities in combustion instability in a lean premixed gas-turbine model combustor. Chaos 22 (4), 043128.
Gotoda, H., Nikimoto, H., Miyano, T. & Tachibana, S. 2011 Dynamic properties of combustion instability in a lean premixed gas-turbine combustor. Chaos 21 (1), 013124.
Gotoda, H., Shinoda, Y., Kobayashi, M., Okuno, Y. & Tachibana, S. 2014 Detection and control of combustion instability based on the concept of dynamical system theory. Phys. Rev. E 89 (2), 022910.
Gottlieb, S. & Shu, C. 1998 Total variation diminishing Runge–Kutta schemes. Maths Comput. 67 (221), 7386.
Graham, O. & Dowling, A. P.2011 Low-order modelling of ducted flames with temporally varying equivalence ratio in realistic geometries. ASME Turbo Expo paper, GT 2011-45255.
Grassberger, P. & Procaccia, I. 1983 Characterization of strange attractors. Phys. Rev. Lett. 50 (5), 346349.
Guzman, A. M. & Amon, C. H. 1994 Transition to chaos in converging–diverging channel flows: Ruelle–Takens–Newhouse scenario. Phys. Fluids 6, 1994, doi:10.1063/1.868206.
Guzman, A. M. & Amon, C. H. 1996 Dynamical flow characterization of transitional and chaotic regimes in converging–diverging channels. J. Fluid Mech. 321 (1), 2557.
Hegger, R., Kantz, H. & Schreiber, T. 1999 Practical implementation of nonlinear time series methods: the TISEAN package. Chaos 9 (2), 413435.
Hemchandra, S.2009 Dyamics of turbulent premixed flames in acoustic fields. PhD thesis, Georgia Institute of Technology.
Hemchandra, S. 2012 Premixed flame response to equivalence ratio perturbations: comparison between reduced order modelling and detailed computations. Combust. Flame 159, 35303543.
Hemchandra, S. & Lieuwen, T. 2010 Local consumption speed of turbulent premixed flames – an analysis of ‘memory effects’. Combust. Flame 157 (5), 955965.
Jahnke, C. C. & Culick, F. E. C. 1994 Application of dynamical systems theory to nonlinear combustion instabilities. J. Propul. Power 10 (4), 508517.
Jiang, G. S. & Peng, D. 2000 Weighted ENO schemes for Hamilton–Jacobi equations. SIAM J. Sci. Comput. 21 (6), 21262143.
Juniper, M. P. 2011 Triggering in the horizontal Rijke tube: non-normality, transient growth and bypass transition. J. Fluid Mech. 667, 272308.
Kabiraj, L., Saurabh, A., Wahi, P. & Sujith, R. I. 2012 Route to chaos for combustion instability in ducted laminar premixed flames. Chaos 22 (2), 023129.
Kabiraj, L. & Sujith, R. I. 2012a Bifurcations of self-excited ducted laminar premixed flames. J. Engng Gas Turbines Power 134, 031502.
Kabiraj, L. & Sujith, R. I. 2012b Nonlinear self-excited thermoacoustic oscillations: intermittency and flame blowout. J. Fluid Mech. 713, 376397.
Kantz, H. 1994 A robust method to estimate the maximal Lyapunov exponent of a time series. Phys. Lett. A 185 (1), 7787.
Kantz, H. & Schreiber, T. 2000 Nonlinear Time Series Analysis. Cambridge University Press.
Karimi, N., Brear, M. J., Jin, S.-H. & Monty, J. P. 2009 Linear and non-linear forced response of a conical, ducted, laminar premixed flame. Combust. Flame 156 (11), 22012212.
Kashinath, K., Hemchandra, S. & Juniper, M. P. 2013a Nonlinear phenomena in thermoacoustic systems with premixed flames. J. Engng Gas Turbines Power 135, 061502.
Kashinath, K., Hemchandra, S. & Juniper, M. P. 2013b Nonlinear thermoacoustics of ducted premixed flames: the influence of perturbation convection speed. Combust. Flame 160 (12), 28562865, doi:10.1016/j.combustflame.2013.06.019.
Kornilov, V. N., Schreel, K. R. A. M. & de Goey, L. P. H. 2007 Experimental assessment of the acoustic response of laminar premixed bunsen flames. Proc. Combust. Inst. 31 (1), 12391246.
Landau, L. D. & Lifshitz, E. M. 1959 Fluid Mechanics. Pergamon.
Lei, S. & Turan, A. 2009 Nonlinear/chaotic behaviour in thermo-acoustic instability. Combust. Theor. Model. 13 (3), 541557.
Li, L. K. B. & Juniper, M. P. 2013 Lock-in and quasiperiodicity in a forced hydrodynamically self-excited jet. J. Fluid Mech. 726, 624655.
Libchaber, A 1987 From chaos to turbulence in Benard convection. Proc. R. Soc. Lond. A 413 (1844), 6369.
Lieuwen, T. C. 2005 Nonlinear kinematic response of premixed flames to harmonic velocity disturbances. Proc. Combust. Inst. 30 (2), 17251732.
Lieuwen, T. C. 2012 Unsteady Combustor Physics. Cambridge University Press.
Longtin, A. 2003 Effects of noise on nonlinear dynamics. In Nonlinear Dynamics in Physiology and Medicine, Interdisciplinary Applied Mathematics, vol. 25. Springer.
Margolis, S. B. 1993 Nonlinear stability of combustion-driven acoustic oscillations in resonance tubes. J. Fluid Mech. 253, 67103.
Matveev, I.2003 Thermo-acoustic instabilities in the Rijke tube: experiments and modeling. PhD thesis, California Institute of Technology.
McLaughlin, J. B. & Orszag, S. 1982 Transition from periodic to chaotic thermal convection. J. Fluid Mech. 122, 123142.
Milnor, J. 1985 On the concept of attractor. Commun. Math. Phys. 99, 177195.
Moeck, J. P. & Paschereit, C. O. 2012 Nonlinear interactions of multiple linearly unstable thermoacoustic modes. Intl. J. Spray Combust. Dyn. 4 (1), 128.
Nair, V. & Sujith, R. I. 2013 Identifying homoclinic orbits in the dynamics of intermittent signals through recurrence quantification. Chaos 23 (3), 033136.
Nair, V., Thampi, G., Karuppusamy, S., Gopalan, S. & Sujith, R. I. 2013 Loss of chaos in combustion noise as a precursor of impending combustion instability. Intl. J. Spray Combust. Dyn. 5 (4), 273290.
Newhouse, S., Ruelle, D. & Takens, F. 1978 Occurrence of strange axiom $A$ attractors near quasi periodic flows on $T^{m}$ , $m\geqslant 3$ . Commun. Math. Phys. 64 (1), 3540.
Noiray, N., Durox, D., Schuller, T. & Candel, S. 2008 A unified framework for nonlinear combustion instability analysis based on the flame describing function. J. Fluid Mech. 615, 139167.
Oberlack, M. & Cheviakov, A. F. 2010 Higher-order symmetries and conservation laws of the $G$ -equation for premixed combustion and resulting numerical schemes. J. Engng Maths 66 (1–3), 121140.
O’Connor, J. & Lieuwen, T. 2012 Recirculation zone dynamics of a transversely excited swirl flow and flame. Phys. Fluids 24 (7), 075107.
Ott, E. 2002 Chaos in Dynamical Systems. Cambridge University Press.
Peng, D. 1999 A PDE-based fast local level set method. J. Comput. Phys. 155 (2), 410438.
Poinsot, T. & Candel, S. M. 1988 A nonlinear model for ducted flame combustion instabilities. Combust. Sci. Technol. 61 (4–6), 121153.
Preetham, H. S. & Lieuwen, T. C. 2008 Dynamics of laminar premixed flames forced by harmonic velocity disturbances. J. Propul. Power 394 (6), 5172.
Preetham, H. S. & Lieuwen, T. 2004 Nonlinear flame-flow transfer function calculations: flow disturbance celerity effects. In Proceedings of the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA Paper 2004–4035.
Ruelle, D. & Takens, F. 1971 On the nature of turbulence. Commun. Math. Phys. 20 (3), 167192.
Shanbhogue, S. J., Shin, D.-H., Hemchandra, S., Plaks, D. & Lieuwen, T. 2009 Flame sheet dynamics of bluff-body stabilized flames during longitudinal acoustic forcing. Proc. Combust. Inst. 32, 17871794.
Shin, D.-H. & Lieuwen, T. 2013 Flame wrinkle destruction processes in harmonically forced, turbulent premixed flames. J. Fluid Mech. 721, 484513.
Shin, D.-H., Plaks, D. V., Lieuwen, T., Mondragon, U. M., Brown, C. T. & McDonell, V. G. 2011 Dynamics of a longitudinally forced, bluff body stabilized flame. J. Propul. Power 27 (1), 105116.
Shreekrishna, H. S. & Lieuwen, T. 2010 Premixed flame response to equivalence ratio perturbations. Combust. Theor. Model. 14 (5), 681714.
Sterling, J. D. 1993 Nonlinear analysis and modelling of combustion instabilities in a laboratory combustor. Combust. Sci. Technol. 89 (1–4), 167179.
Stow, S. R. & Dowling, A. P. 2009 A time-domain network model for nonlinear thermoacoustic oscillations. J. Engng Gas Turbines Power 131 (3), 031502, doi:10.1115/1.2981178.
Subramanian, P.2011 Dynamical systems approach to the investigation of thermoacoustic instabilities. PhD thesis, Indian Institute of Technology, Madras.
Subramanian, P., Mariappan, S., Sujith, R. I. & Wahi, P. 2010 Bifurcation analysis of thermoacoustic instability in a horizontal Rijke tube. Intl J. Spray Combust. Dyn. 2 (4), 325355.
Subramanian, P. & Sujith, R. I. 2011 Non-normality and internal flame dynamics in premixed flame–acoustic interaction. J. Fluid Mech. 679, 315342.
Theiler, J. 1990 Estimating fractal dimension. J. Opt. Soc. Am. A 7 (6), 10551073.
Thompson, J. M. T. & Stewart, H. B. 2002 Nonlinear Dynamics and Chaos. Wiley.
Waugh, I. C.2013 Methods for analysis of nonlinear thermoacoustic systems. PhD thesis, University of Cambridge.
Waugh, I. C. & Juniper, M. P. 2011 Triggering in a thermoacoustic system with stochastic noise. Intl J. Spray Combust. Dyn. 3 (4), 225242.
Williams, F. A. 1985 Turbulent Combustion in the Mathematics of Combustion (ed. Buckmaster, J. D.), pp. 97131. SIAM.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Nonlinear self-excited thermoacoustic oscillations of a ducted premixed flame: bifurcations and routes to chaos

  • Karthik Kashinath (a1), Iain C. Waugh (a1) and Matthew P. Juniper (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed