Skip to main content Accessibility help
×
Home

Nonlinear interaction between a boundary layer and a liquid film

  • M. VLACHOMITROU (a1) and N. PELEKASIS (a1)

Abstract

The nonlinear stability of a laminar boundary layer that flows at high Reynolds number (Re) above a plane surface covered by a liquid film is investigated. The basic flow is considered to be nearly parallel and the simulations are based on triple deck theory. The overall interaction problem is solved using the finite element methodology with the two-dimensional B-cubic splines as basis functions for the unknowns in the boundary layer and the film and the one-dimensional B-cubic splines as basis functions for the location of the interface. The case of flow above an oscillating solid obstacle is studied and conditions for the onset of Tollmien–Schlichting (TS) waves are recovered in agreement with the literature. The convective and absolute nature of TS and interfacial waves is captured for gas-film interaction, and the results of linear theory are recovered. The evolution of nonlinear disturbances is also examined and the appearance of solitons, spikes and eddy formation is monitored on the interface, depending on the relative magnitude of Froude and Weber numbers (Fr, We), and the gas to film density and viscosity ratios (ρ/ρw, μ/μw). For viscous films TS waves grow on a much faster time scale than interfacial waves and their effect is essentially decoupled. The influence of interfacial disturbances on short-wave growth in the bulk of the boundary layer bypassing classical TS wave development is captured. For highly viscous films for which inertia effects can be neglected, e.g. aircraft anti-icing fluids, soliton formation is obtained with their height remaining bounded below a certain height. When water films are considered interfacial waves exhibit unlimited local growth that is associated with intense eddy formation and the appearance of finite time singularities in the pressure gradient.

Copyright

Corresponding author

Email address for correspondence: pel@uth.gr

References

Hide All
Bezos, G. M., Dunham, R. E., Gentry, G. L. Jr. & Melson, W. E. 1992 Wind tunnel aerodynamic characteristics of a transport-type airfoil in a simulated heavy rain environment. Tech Rep. TP-3184. NASA.
Bowles, R., Davies, C. & Smith, F. T. 2003 On the spiking stages in deep transition and unsteady separation. J. Engng Math. 45, 227245.
Brotherton-Ratcliffe, R. V. & Smith, F. T. 1987 Complete breakdown of an unsteady interactive boundary layer (over a surface distortion or in a liquid layer). Mathematica 34, 86100.
Caponi, E. A., Fornberg, B., Knight, D. D., Mclean, J. W., Saffman, P. G. & Yuen, H. C. 1982 Calculations of laminar viscous flow over a moving wavy surface. J. Fluid Mech. 124, 347362.
Cassel, K. W., Ruban, A. I. & Walker, D. A. 1995 An instability in supersonic boundary-layer flow over a compression ramp. J. Fluid Mech. 300, 265285.
Cassel, K. W., Ruban, A. I. & Walker, D. A. 1996 The influence of wall cooling on hypersonic boundary-layer separation and stability. J. Fluid Mech. 321, 189216.
Chomaz, J. M., Huerre, P. & Redekopp, L. G. 1991 A frequency selection criterion in spatially developing flows. Stud. Appl. Math. 84, 119144.
Craik, A. D. D. 1966 Wind generated waves in thin liquid films. J. Fluid Mech. 26 (2), 369392.
De Boor, C. 1978 A Practical Guide to Splines. Springer.
Duck, P. W. 1985 Laminar flow over unsteady humps: the formation of waves. J. Fluid Mech. 160, 465498.
Elliott, J. W., Cowley, S. J. & Smith, F. T. 1983 Breakdown of boundary layers: (i) on moving surfaces; (ii) in self-similar unsteady flow; (iii) in fully unsteady flow. Geophys. Astrophys. Fluid Dyn. 25, 77138.
Fletcher, A. J. P., Ruban, A. I. & Walker, J. D. A. 2004 Instabilities in supersonic compression ramp flow. J. Fluid Mech. 517, 309330.
Gresho, P. M. & Sani, R. L. 1998 Incompressible Flow and the Finite Element Method: Volume II. Wiley.
Hendrickson, G. S. & Hill, E. G.Effects of aircraft de-anti-icing fluids on airfoil characteristics, von Karman Inst. for Fluid Dynamics Lecture Series, Influence of Environmental factors on aircraft performance. von Karman Inst. for Fluid Dynamics, Brussels, Belgium, Feb. 16–19, 1987.
Huerre, P. & Monkewitz, P. A. 1990 Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22, 473537.
Jenson, R., Burggraf, O. R. & Rizzetta, D. P. 1975 Asymptotic solution for supersonic viscous flow past a compression corner. Lecture Notes Phys. 35, 218224.
Lac, E., Barthes-Biesel, D., Pelekasis, N. & Tsamopoulos, J. 2004 Spherical capsules in three-dimensional unbounded Stokes flows: effect of the membrane constitutive law and the onset of buckling. J. Fluid Mech. 516, 303334.
Lin, C. C. 1946 On the stability of two-dimensional parallel flows. Stability in viscous fluid. Quart. Appl. Math. 3 (4), 277301.
Ludwieg, H. & Hornung, H. 1989 The instability of a liquid film on a wall exposed to an airflow. J. Fluid Mech. 200, 217233.
Meza, C. E. & Balakotaiah, V. 2008 Modeling and experimental studies of large amplitude waves on vertically falling films. Chem. Engng Sci. 63, 47044734.
Nelson, J. J., Alving, A. E. & Joseph, D. D. 1995 Boundary layer flow of air over water on a flat plate. J. Fluid Mech. 284, 159169.
Ozgen, S., Carbonaro, M. & Sarma, G. S. R. 2002 Experimental study of wave characteristics on a thin layer of de/anti-icing fluid. Phys. Fluids 14, 33913402.
Ozgen, S., Degrez, G. & Sarma, G. S. R. 1998 Two-fluid boundary layer stability. Phys. Fluids 10 (11), 27462757.
Pelekasis, N. A. & Tsamopoulos, J. A. 2001 Linear stability analysis of a gas boundary layer flowing past a thin liquid film over a flat plate. J. Fluid Mech. 436, 321352.
Pelekasis, N. A., Tsamopoulos, J. A. & Manolis, G. D. 1992 A hybrid finite-boundary element method for inviscid flows with free surface. J. Comput. Phys. 101 (2), 231251.
Peridier, V. J., Smith, F. T. & Walker, J. D. A. 1991 a Vortex-induced boundary-layer separation. Part 1. The unsteady limit problem Re → ∞. J. Fluid Mech. 232, 99131.
Peridier, V. J., Smith, F. T. & Walker, J. D. A. 1991 b Vortex-induced boundary-layer separation. Part 2. Unsteady interacting boundary layer theory. J. Fluid Mech. 232, 133165.
Prender, P. M. 1989 Splines and Variational Methods. John Wiley & Sons.
Purvis, R. & Smith, F. T. 2004 Air–water interactions near droplet impact. Eur. J. Appl. Math. 15, 853871.
Rothmayer, A. P., Matheis, B. D. & Timoshin, S. N. 2002 Thin liquid films flowing over external aerodynamic surfaces. J. Engng Math. 42, 341357.
Ruban, A. I. 1978 Numerical solution of the local asymptotic problem of the unsteady separation of a laminar boundary layer in supersonic flow Comput. Math. Math. Phys. 18 (5), 175187.
Ryzhov, O. S. & Terent'ev, E. D. 1986 On the transition mode characterizing the triggering of a vibrator in the subsonic boundary layer on a plate. Prikl. Mat. Mekh., J. Appl. Math. Mech. (Engl. Transl) 50 (6), 753762.
Saad, Y. & Schultz, M. H. 1986 GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856869.
Smith, F. T. 1976 a Flow through constricted or dilated pipes and channels. Part 1. Quart. J. Mech. Appl. Math 29 (3), 343364.
Smith, F. T. 1976 b Flow through constricted or dilated pipes and channels: Part 2. Quart. J. Mech. Appl. Math 29 (3), 365376.
Smith, F. T. 1979 a On the non-parallel flow stability of the Blasius boundary layer. Proc. R. Soc. Lond. A 366, 91109.
Smith, F. T. 1979 b Nonlinear stability of boundary layers for disturbances of various sizes. Proc. R. Soc. Lond. A 368, 573589.
Smith, F. T. 1985 A structure for laminar-flow past a bluff body at high Reynolds-number. J. Fluid Mech. 155, 175191.
Smith, F. T. & Bodonyi, R. J. 1985 On short-scale inviscid instabilities in flow past surface-mounted obstacles and other non-parallel motions. Aeronaut. J. 89 (886), 205212.
Smith, F. T., Brighton, P. W. M., Jackson, P. S. & Hunt, J. C. R. 1981 On boundary-layer flow past two-dimensional obstacles. J. Fluid Mech. 113, 123152.
Smith, F. T. & Burggraf, O. R. 1985 On the development of large-sized short-scaled disturbances in boundary layers. Proc. R. Soc. Lond. A 399, 2555.
Smith, F. T. 1986 Two-dimensional disturbance travel, growth and spreading in boundary layers. J. Fluid Mech. 169, 353377.
Smith, F. T. 1988 Finite time singularity can occur in any unsteady interacting boundary layer. Mathematica 35, 256273.
Smith, F. T. 1995 On spikes and spots: strongly nonlinear theory and experimental comparisons. Phil. Trans. R. Soc. Lond. A. 352, 405424.
Smith, F. T., Li, L. & Wu, G. X. 2003 Air cushioning with a lubrication/inviscid balance. J. Fluid Mech. 482, 291318.
Smyrnaios, D. N., Pelekasis, N. A. & Tsamopoulos, J. A. 2000 Boundary layer flow of air past solid surfaces in the presence of rainfall. J. Fluid Mech. 425, 79110.
Sychev, VL. V., Ruban, A. I., Sychev, VI. V. & Korolev, G. L. 1998 Asymptotic theory of separated flows. Cambridge University Press.
Terent'ev, E. D. 1981 The linear problem of a vibrator in a subsonic boundary layer. J. Appl. Math. Mech. 45 (6), 791795.
Terent'ev, E. D. 1984 The linear problem of a vibrator performing harmonic oscillations at supercritical frequencies in a subsonic boundary layer. J. Appl. Math. Mech. 48 (2), 184191.
Thompson, J. F., Warsi, Z. U. A. & Mastin, C. W. 1995 Numerical Grid Generation: Foundations and Applications. North Holland.
Timoshin, S. N. 1997 Instabilities in a high-Reynolds-number boundary layer on a film-coated surface. J. Fluid Mech. 353, 163195.
Tsao, J. C., Rothmayer, A. P. & Ruban, A. 1997 Stability of air flow past thin liquid films on airfoils. Comput. Fluids 26 (5), 427452.
Tsiglifis, K. & Pelekasis, N. A. 2005 Nonlinear oscillations and collapse of elongated bubbles subject to weak viscous effects. Phys. Fluids 17, 102101.
Tutty, O. R. & Cowley, S. J. 1986 On the stability and the numerical simulation of the unsteady interactive boundary-layer equation. J. Fluid Mech. 168, 431456.
Veldman, A. E. P. 1981 New quasi-simultaneous method to calculate interacting boundary layers. AIAA J. 19, 7985.
Yih, C. S. 1990 Wave formation on a liquid layer for de-icing airplane wings. J. Fluid Mech. 212, 41.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Nonlinear interaction between a boundary layer and a liquid film

  • M. VLACHOMITROU (a1) and N. PELEKASIS (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed