Akers, B. & Milewski, P. A.
2009
A model equation for wavepacket solitary waves arising from capillary–gravity Flows. Stud. Appl. Maths
122 (3), 249–274.

Ashton, G. D.
1986
River and Lake Ice Engineering. Water Resources Publication.

Balint, T. S. & Lucey, A. D.
2005
Instability of a cantilevered flexible plate in viscous channel flow. J. Fluid Struct.
20 (7), 893–912.

Benney, D. J.
1977
A general theory for interactions between short and long waves. Stud. Appl. Maths
56 (1), 81–94.

Benjamin, T. B. & Feir, J. E.
1967
The disintegration of wave trains on deep water Part 1. Theory. J. Fluid Mech.
27 (3), 417–430.

Bhattacharjee, J. & Sahoo, T.
2009
Interaction of flexural gravity waves with shear current in shallow water. Ocean Engng
36, 831–841.

Choi, W.
2009
Nonlinear surface waves interacting with a linear shear current. Maths Comput. Simul.
80 (1), 29–36.

Choi, W. & Camassa, R.
1999
Exact evolution equations for surface waves. J. Engng Mech. ASCE
125, 756–760.

Craik, A. D.
1988
Wave Interactions and Fluid Flows. Cambridge University Press.

Davey, A. & Stewartson, K.
On three-dimensional packets of surface waves. Proc. R. Soc. Lond. A
338 (1613), 101–110.

Djordjevic, V. D. & Redekopp, L. G.
1977
On two-dimensional packets of capillary-gravity waves. J. Fluid Mech.
79 (4), 703–714.

Dyachenko, A. I., Kuznetsov, E. A., Spectorm, M. D. & Zakharov, V. E.
1996a
Analytical description of the free surface dynamics of an ideal fluid (canonical formalism and conformal mapping). Phys. Lett. A
221, 73–79.

Dyachenko, A. I., Zakharov, V. E. & Kuznetsov, E. A.
1996b
Nonlinear dynamics on the free surface of an ideal fluid. Plasma Phys. Rep.
22, 916–928.

Forbes, L. K.
1986
Surface waves of large amplitude beneath an elastic sheet. Part 1. High-order series solution. J. Fluid Mech.
169, 409–428.

Francius, M. & Kharif, C.
2017
Two-dimensional stability of finite-amplitude gravity waves on water of finite depth with constant vorticity. J. Fluid Mech.
830, 631–659.

Gao, T., Milewski, P. A. & Vanden-Broeck, J.-M.
2019
Hydroelastic solitary waves with constant vorticity. Wave Motion
85, 84–97.

Gao, T. & Vanden-Broeck, J.-M.
2014
Numerical studies of two-dimensional hydroelastic periodic and generalised solitary waves. Phys. Fluids
26 (8), 087101.

Gao, T., Vanden-Broeck, J.-M. & Wang, Z.
2018
Numerical computations of two-dimensional flexural-gravity solitary waves on water of arbitrary depth. IMA J. Appl. Maths
83 (3), 436–450.

Gao, T., Wang, Z. & Vanden-Broeck, J.-M.
2016
New hydroelastic solitary waves in deep water and their dynamics. J. Fluid Mech.
788, 469–491.

Goodman, D. J., Wadhams, P. & Squire, V. A.
1980
The flexural response of a tabular ice island to ocean swell. Ann. Glaciol.
1, 23–27.

Guyenne, P.
2017
A high-order spectral method for nonlinear water waves in the presence of a linear shear current. Comput. Fluids
154, 224–235.

Guyenne, P. & Părău, E. I.
2012
Computations of fully nonlinear hydroelastic solitary waves on deep water. J. Fluid Mech.
713, 307–329.

Guyenne, P. & Părău, E. I.
2014
Finite-depth effects on solitary waves in a floating ice sheet. J. Fluid Struct.
49, 242–262.

Hsu, H., Kharif, C., Abid, M. & Chen, Y.
2018
A nonlinear Schrödinger equation for gravity–capillary water waves on arbitrary depth with constant vorticity. Part 1. J. Fluid Mech.
854, 146–163.

Jaiman, R. K., Parmar, M. K. & Gurugubelli, P. S.
2014
Added mass and aeroelastic stability of a flexible plate interacting with mean flow in a confined channel. J. Appl. Mech.
81 (4), 041006.

Jones, M. C. W.
1992
Nonlinear stability of resonant capillary-gravity waves. Wave Motion
15 (3), 267–283.

Kawahara, T., Sugimoto, N. & Kabutani, T.
1975
Nonlinear interaction between short and long capillary–gravity waves. J. Phys. Soc. Japan
39 (5), 1379–1386.

Kharif, C. & Pelinovsky, E.
2003
Physical mechanisms of the rogue wave phenomenon. Eur. J. Mech. (B/Fluids)
22 (6), 603–634.

Korobkin, A., Părău, E. I. & Vanden-Broeck, J.-M.
2011
The mathematical challenges and modelling of hydroelasticity. Phil. Trans. R. Soc. Lond. A
369 (1947), 2803–2812.

Marko, J. R.
2003
Observations and analyses of an intense waves-in-ice event in the Sea of Okhotsk. J. Geophys. Res.
108, 3296.

Massom, R. A., Scambos, T. A., Bennetts, L. G., Reid, P., Squire, V. A. & Stammerjohn, S. E.
2018
Antarctic ice shelf disintegration triggered by sea ice loss and ocean swell. Nature
558, 383–389.

McGoldrick, L. F.
1970
On Wilton’s ripples: a special case of resonant interactions. J. Fluid Mech.
42 (1), 193–200.

Milewski, P. A. & Wang, Z.
2013
Three dimensional flexural-gravity waves. Stud. Appl. Maths
131 (2), 135–148.

Milewski, P. A., Vanden-Broeck, J.-M. & Wang, Z.
2011
Hydroelastic solitary waves in deep water. J. Fluid Mech.
679, 628–640.

Milewski, P. A., Vanden-Broeck, J. M. & Wang, Z.
2013
Steady dark solitary flexural-gravity waves. Proc. R. Soc. A
469, 20120485.

Milinazzo, F. A. & Saffman, P. G.
1990
Effect of a surface shear layer on gravity and gravity-capillary waves of permanent form. J. Fluid Mech.
216, 93–101.

Părău, E. I. & Dias, F.
2002
Nonlinear effects in the response of a floating ice plate to a moving load. J. Fluid Mech.
460, 281–305.

Peake, N.
2001
Nonlinear stability of a fluid-loaded elastic plate with mean flow. J. Fluid Mech.
434, 101–118.

Peake, N.
2004
On the unsteady motion of a long fluid-loaded elastic plate with mean flow. J. Fluid Mech.
507, 335–366.

Ribeiro, R., Milewski, P. A. & Nachbin, A.
2017
Flow structure beneath rotational water waves with stagnation points. J. Fluid Mech.
812, 792–814.

Simmen, J. A. & Saffman, P. G.
1985
Steady deep water waves on a linear shear current. Stud. Appl. Maths
73, 35–57.

Simmons, W. F.
1969
A variational method for weak resonant wave interactions. Proc. R. Soc. Lond. A
309, 551–579.

Shoele, K. & Mittal, R.
2016
Flutter instability of a thin flexible plate in a channel. J. Fluid Mech.
786, 29–46.

Squire, V., Hosking, R. J., Kerr, A. D. & Langhorne, P. J.
1996
Moving Loads on Ice Plates, Solid Mechanics and its Applications. Kluwer.

Squire, V., Robinson, W., Langhorne, P. & Haskell, T.
1988
Vehicles and aircraft on floating ice. Nature
333 (6169), 159–161.

Stiassnie, M. & Kroszynski, U.
1982
Long-time evolution of an unstable water-wave train. J. Fluid Mech.
116, 207–225.

Takizawa, T.
1985
Deflection of a floating sea ice sheet induced by a moving load. Cold Regions Sci. Tech.
11, 171–180.

Takizawa, T.
1988
Response of a floating sea ice sheet to a steadily moving load. J. Geophys. Res.
93, 5100–5112.

Tanaka, M.
1990
Maximum amplitude of modulated wavetrain. Wave Motion
2 (6), 559–568.

Teles Da Silva, A. F. & Peregrine, D. H.
1988
Steep, steady surface waves on water of finite depth with constant vorticity. J. Fluid Mech.
195, 281–302.

Thomas, R., Kharif, C. & Manna, M.
2012
A nonlinear Schrödinger equation for water waves on finite depth with constant vorticity. Phys. Fluids
24, 127102.

Toland, J. F.
2007
Heavy hydroelastic travelling waves. Proc. R. Soc. Lond. A
463, 2371–2397.

Trichtchenko, O., Milewski, P. A., Părău, E. I. & Vanden-Broeck, J.-M.
2019
Stability of periodic travelling flexural-gravity waves in two dimensions. Stud. Appl. Maths
142, 65–90.

Trichtchenko, O., Părău, E. I., Vanden-Broeck, J.-M. & Milewski, P. A.
2018
Solitary flexural-gravity waves in three dimensions. Phil. Trans. R. Soc. Lond. A
376 (2129), 20170345.

Vanden-Broeck, J.-M.
1994
Steep solitary waves in water of finite depth with constant vorticity. J. Fluid Mech.
274, 339–348.

Vanden-Broeck, J.-M. & Părău, E. I.
2011
Two-dimensional generalized solitary waves and periodic waves under an ice sheet. Phil. Trans. R. Soc. Lond. A
369, 2957–2972.

Wang, Z. & Milewski, P. A.
2012
Dynamics of gravity-capillary solitary waves in deep water. J. Fluid Mech.
708, 480–501.

Wang, Z., Părău, E. I., Milewski, P. A. & Vanden-Broeck, J.-M.
2014
Numerical study of interfacial solitary waves propagating under an elastic sheet. Proc. R. Soc. Lond. A
470, 20140111.

Wang, Z., Vanden-Broeck, J.-M. & Milewski, P. A.
2013
Two-dimensional flexural-gravity waves of finite amplitude in deep water. IMA J. Appl. Maths
78, 750–761.

Wilton, J. R.
On ripples. Phil. Mag.
29 (173), 688–700.